Long-Range OASDI Projection Methodology

Intermediate Assumptions of the 2012 Trustees Report

June 2012
Office of the Chief Actuary
Social Security Administration

A. Flow Charts

Chart 1:

Overview of Long-Range OASDI Projection Methodology

Chart 2:

Demography - Process 1

Chart 3: Economics - Process 2

Chart 4: Beneficiaries - Process 3

Note: Insured widow refers to widow beneficiaries who are insured for OAIB benefits, but not receiving those benefits

Chart 5: Trust Fund Operations and Actuarial Status - Process 4

B. Process Descriptions

The long-range programs used to make projections for the annual Trustees Report are grouped into four major processes. These include Demography, Economics, Beneficiaries, and Trust Fund Operations and Actuarial Status. Each major process consists of a number of subprocesses. Each subprocess is described in terms of three elements:

- This overview attempts to provide a general description of the purpose of each subprocess. Key projected variables used in the subprocess are introduced. Some variables are represented as being dependent in an equation, where the dependent variable is defined in terms of one or more independent variables. Independent variables may include previously calculated dependent variables or data provided from outside the subprocess. Other key variables are referenced by "(•)" following the variable name. This indicates that the calculation of this variable can not easily be communicated by an equation and, thus, requires a more complex discussion.
- Input Data - Data used in the subprocess are described. These data include those from other subprocesses, ultimate long-range assumptions provided by the Board of Trustees of the OASDI Trust Funds, data from other offices of the Social Security Administration, and data from outside the Social Security Administration (e.g., estimates of the U.S. population). Data description includes data source and data detail (e.g., define age detail of data). In addition, an indication of how often additional data are expected to be received is included.
- Development of Output - The key variables are described in greater detail, including the level of disaggregation of the data.

Process 1:

Demography

1. Demography

The primary purpose of the Demography Process is to provide estimates of the projected Social Security area population ${ }^{1}$ for each year of the 75 -year projection period in the Trustees Report. For the 2012 report, the projection period covers the years 2012 through 2086. The Demography Process receives input data mainly from other government agencies, and provides output data to the Economics, Beneficiaries, and Trust Fund Operations and Actuarial Status processes.

The Demography Process is composed of eight subprocesses: FERTILITY, MORTALITY, LEGAL IMMIGRATION, HISTORICAL POPULATION, OTHER IMMIGRATION, MARRIAGE, DIVORCE, and PROJECTED POPULATION. The following chart displays the key outputs of each subprocess:

Subprocess	Key Outputs
FERTILITY	- Birth rates, by age of mother
MORTALITY	- Probabilities of death, by age and sex
LEGAL IMMIGRATION	- Legal immigrants, by age and sex - Legal emigrants, by age and sex - Adjustments of status from other than legal (OTL) status to legal status, by age and sex
HISTORICAL POPULATION	- Historical estimates of the Social Security area total population, by single year of age, sex, and marital status - Historical estimates of the OTL population, by single year of age and sex
$\begin{gathered} \text { OTHER } \\ \text { IMMIGRATION } \end{gathered}$	- OTL immigrants, by age and sex - Data ("fixed exits" and "exit rates") used to project OTL emigration, by age and sex
MARRIAGE	- Marriage rates, by age-of-husband crossed with age-of-wife
DIVORCE	- Divorce rates, by age-of-husband crossed with age-of-wife
PROJECTED POPULATION	- Projected total populations, by age, sex, and marital status, developed by starting with the latest estimates from HISTORICAL POPULATION and projecting these estimates forward using outputs from all other subprocesses - Projected OTL populations, by single year of age and sex, developed by starting with the latest OTL estimates from HISTORICAL POPULATION and projecting these estimates forward using values from MORTALITY, LEGAL IMMIGRATION, and OTHER IMMIGRATION

[^0]
1.1. FERTILITY

1.1.a. Overview

The National Center for Health Statistics (NCHS) collects data on annual numbers of births by single year of age of mother and the U.S. Census Bureau produces estimates of the resident population by single year of age for females. Age-specific birth rates $\left(b_{x}^{z}\right)$ for a given year z are defined as the ratio of (1) births $\left(B_{x}^{z}\right)$ during the year to mothers at the specified age x to (2) the midyear female population $\left(P_{x}^{z}\right)$ at that age. The total fertility rate $T F R^{z}$ summarizes the agespecific fertility rates for a given year z. The total fertility rate for a given year z equals the sum of the age-specific birth rates for all ages x during the year. One can also interpret the total fertility rate as the number of children born to a woman if she were to survive her childbearing years and experience the age-specific fertility rates of year z throughout her childbearing years.

The FERTILITY subprocess combines the historical values of b_{x}^{z} and $T F R^{z}$ with an ultimate assumed future value of the TFR to develop projections of b_{x}^{z}. The primary equations of this subprocess are given below:

$$
\begin{align*}
& b_{x}^{z}=b_{x}^{z}(\cdot) \tag{1.1.1}\\
& T F R^{z}=\sum_{x} b_{x}^{z} \tag{1.1.2}
\end{align*}
$$

1.1.b. Input Data

Trustees Assumptions -

Each year the Board of Trustees of the OASDI Trust Funds sets the ultimate assumed values for the $T F R$. The $T F R$ reaches its ultimate value in the $25^{\text {th }}$ year of the projection period. Under the intermediate assumptions underlying the 2012 Trustees Report, the ultimate TFR is 2.0 and it is assumed to be reached in 2036.

Other input data -

- From the NCHS, annual numbers of births by age of mother ${ }^{2}(10-14,15,16,17, \ldots$, 48, 49-54) for years 1980-2008. In general, the NCHS provides an annual update including one additional year of final birth data and the previous historical years are only updated if the NCHS makes a historical revision to their data.

[^1]- From the NCHS, preliminary TFR for 2009. In general, NCHS provides a preliminary TFR only for the year after the last final data year.
- From the NCHS, estimated annual number of births for 2009 and 2010. In general, NCHS provides this data only for the two years after the last final data year.
- From the U.S. Census Bureau, estimates of the July $1^{\text {st }}$ female resident population by single year of age for ages 14-49 for 1980-2008. Each year, Census provides updated data for years after the most recent decennial census.
- From the NCHS, historical birth rates, by single year of age of mother (14-49) for the period 1917-1979. No updates of these data are needed.

1.1.c. Development of Output

Equation 1.1.1-Age-specific birth rates

The FERTILITY subprocess produces the age-specific birth rates, by childbearing ages 14 through 49, for years 1941 through the end of the 75 -year projection period. For historical years prior to 1980, age-specific birth rates come from the NCHS. For years 1980 through the remaining historical period, age-specific birth rates are calculated as: $b_{x}^{z}=\frac{B_{x}^{z}}{P_{x}^{z}}$, using birth data from the NCHS and estimates of the July $1^{\text {st }}$ female resident population from the U.S. Census Bureau.

The age-specific birth rates are projected using a process that is consistent with both the observed trends in recent data and the ultimate assumed total fertility rate. This process consists of the following steps:

1. Averaged birth rates by age group, ${ }^{3}$ designated as ${ }_{5} b_{x}^{z}$, are calculated from the agespecific birth rates b_{x}^{z} for each year during the period 1980-2008.
2. To calculate the starting values of the projection process, the ${ }_{5} b_{x}^{z}$ values from the last five years of historical data are averaged using weights of $5,4,3,2$, and 1 for years 2008, 2007, 2006, 2005, and 2004, respectively.
3. For each ${ }_{5} b_{x}^{z}$ age group series, the slope of the least squares line is calculated based on a regression over the period 1983-2008.

[^2]4. For 2009, each of the seven starting values of ${ }_{5} b_{x}^{z}$ (from Step 2) is projected forward by adding 100 percent of their respective slope (from Step 3).
5. Then, a preliminary total fertility rate for $2009, T F R_{p}^{2009}$, is calculated such that, in general, it is equal to 5 times the sum of each ${ }_{5} b_{x}^{2009}$. For the age group 14-19, 6 times the sum is used since this age group actually contains one additional age.
6. For 2009, the preliminary TFR released by NCHS was 2.0075 and thus the Trustees set $T F R^{2009}$ equal to 2.0075 .
7. To ensure the assumed total fertility rate is achieved for 2009, each value of ${ }_{5} b_{x}^{2009}$ (from Step 4) is now multiplied by the ratio of the assumed $T F R^{2009}$ (from Step 6) and the respective value of $T F R_{p}^{2009}$ (from Step 5).
8. For 2010, each final ${ }_{5} b_{x}^{z}$ for 2009 is projected forward by adding 96 percent of the respective slope (from Step 3). For subsequent projection years (2011-2036), an arithmetically decreasing portion of the slopes ${ }^{4}$ is added to the previous year's final values of ${ }_{5} b_{x}^{z}$ to get preliminary values of ${ }_{5} b_{x}^{z}$.
9. For years 2010 and later, a preliminary total fertility rate, $T F R_{p}^{z}$, is calculated from the preliminary values of ${ }_{5} b_{x}^{z}$ in Step 8 and is calculated in the same manner as in Step 5.
10. Then, for each year, an adjustment is made so that the annual $T F R^{z}$ is consistent with the Trustees' assumed TFRs. For the preliminary period (2009-2011), the values of $T F R^{z}$ are set equal to values consistent with the preliminary and provisional data from the NCHS. As mentioned in Step 6, $T F R^{2009}$ is assumed to be 2.0075. $T F R^{2010}$ is assumed to be 1.9513, and $T F R^{2011}$ is assumed to be approximately 2.0260. 2.0260 is equal to a weighted average of the prior five year's $T F R^{z} \mathrm{~s}(2006-2010)$. For 2012 through 2015, the Trustees use a weighted average of the $T F R^{z}$ s from 2006 - 2010 but the weights all converge to 1.00 by 2015 . For years after 2015, $T F R^{z}$ is assumed to decrease linearly from $T F R^{2015}$ until reaching the ultimate value in 2036.
11. To ensure the assumed total fertility rate is achieved, each value of ${ }_{5} b_{x}^{z}$ (Step 8) is multiplied by the ratio of the assumed $T F R^{z}$ (Step 10) and the respective value of $T F R_{p}^{z}$ (Step 9).

[^3]12. The final step of the projection method disaggregates the adjusted ${ }_{5} b_{x}^{z}$ into single age birth rates by multiplying the final ${ }_{5} b_{x}^{z}$ values for each year (Steps 7 or 11) by the ratio of the single year b_{x}^{z} to the ${ }_{5} b_{x}^{z}$ for each of the respective ages and age groups as calculated in the last year of complete historical data (Step 1). Then, minor adjustments are done to correct rounding issues.

1.2 MORTALITY

1.2.a. Overview

The National Center for Health Statistics (NCHS) collects data on annual numbers of deaths and the U.S. Census Bureau produces estimates of the U.S. resident population. Central death rates $\left({ }_{y} M_{x}\right)$ are defined as the ratio of (1) the number of deaths occurring during the year to persons between exact ages x and $x+y$ to (2) the midyear population between exact ages x and $x+y$. For historical years prior to $1968,{ }_{y} M_{x}$ are calculated from NCHS and Census data by sex. For historical years beginning in 1968, the same data are used in the calculations for ages under 65, but data from the Centers for Medicare and Medicaid Services (CMS) are used for ages 65 and over. Based on death by cause data from the NCHS, the ${ }_{y} M_{x}$ are distributed by cause of death for years 1979 and later. ${ }^{5}$

Over the last century, death rates have decreased substantially. The historical improvement in mortality is quantified by calculating the average annual percentage reduction $\left({ }_{y} A A_{x}\right)$ in the central death rate. In order to project future ${ }_{y} M_{x}$, the Board of Trustees of the OASDI Trust Funds determines the ultimate average annual percentage reduction that will be realized during the projection period $\left({ }_{y} A A_{x}^{u}\right)$ for each sex and cause of death.

The basic mortality outputs of the MORTALITY subprocess that are used in projecting the population are probabilities of death by age and sex $\left(q_{x}\right)$. The probability that a person age x will die within one year $\left(q_{x}\right)$ is calculated from the central death rates (the series of ${ }_{y} M_{x}$).

Period life expectancy ($\stackrel{\circ}{\mathrm{e}}_{\mathrm{x}}$) is defined as the average number of years of life remaining for people who are age x and are assumed to experience the assumed probabilities of death throughout their lifetime. It is generated from the probabilities of death for a given year and is a summary statistic of overall mortality for that year.

Age-adjusted death rates $(A D R)$ are also used to summarize the mortality experience of a single year, making different years comparable to each other. Age-adjusted death rates are a weighted average of the ${ }_{y} M_{x}$, where the weights used are the numbers of people in the corresponding age groups of the standard population, the 2000 U.S. Census resident population (${ }_{y} S P_{x}$). Thus, if

[^4]the age-adjusted death rate for a particular year and sex is multiplied by the total 2000 U.S. Census resident population, the result gives the number of deaths that would have occurred in the 2000 U.S. Census resident population if the ${ }_{y} M_{x}$ for that particular year and sex had been experienced. Age-sex-adjusted death rates $(A S D R)$ are calculated to summarize death rates for both sexes combined and are calculated as a weighted average of the ${ }_{y} M_{x}$, where each weight is the number of people in the corresponding age and sex group of the 2000 U.S. Census resident population.

MORTALITY projects annual ${ }_{\mathrm{y}} \mathrm{M}_{\mathrm{x}}$, which are then used to calculate the program's additional outputs. The equations for this subprocess, 1.2.1 through 1.2.6, are given below:

$$
\begin{align*}
& { }_{y} M_{x}={ }_{y} M_{x}(\cdot) \tag{1.2.1}\\
& { }_{y} A A_{x}={ }_{y} A A_{x}(\cdot) \tag{1.2.2}\\
& q_{x}=q_{x}(\cdot) \tag{1.2.3}\\
& \stackrel{\circ}{\mathrm{e}}_{\mathrm{x}}=\stackrel{\circ}{\mathrm{e}}_{\mathrm{x}}(\cdot) \tag{1.2.4}\\
& A D R_{s}^{z}=\frac{\sum_{x} S P_{x} \cdot{ }_{y} M_{x, s}^{z}}{\sum_{x} y_{y} S P_{x}} \tag{1.2.5}\\
& A S D R^{z}=\frac{\sum_{s} \sum_{x} S P_{x, s} \cdot{ }_{y} M_{x, s}^{z}}{\sum_{s} \sum_{x} S P_{x, s}} \tag{1.2.6}
\end{align*}
$$

where ${ }_{y} M_{x, s}^{z}$ refers to the central death rate between exact age x and $x+y$, by sex, in year z; ${ }_{y} S P_{x}$ denotes the number of people in the standard population (male and female combined) who are between exact age x and $x+y$; and ${ }_{y} S P_{x, s}$ denotes the number of people, by sex, in the standard population who are between exact age x and $x+y$.

1.2.b. Input Data

Trustees Assumptions -

Each year the Board of Trustees of the OASDI Trust Funds sets the ultimate assumed values for the ${ }_{y} A A_{x}$ by sex, age group, ${ }^{6}$ and cause of death. ${ }^{7}$ The average annual percentage

[^5]reductions reach their ultimate values in the $25^{\text {th }}$ year of the 75 -year projection period. The ultimate rates of reduction by sex, age group, and cause of death can be found in Appendix 1.2-1.

NCHS Data -

- Annual numbers of registered deaths by sex and age group for the period 1900-1978. These data are not updated. Registered deaths refer to deaths in the Death Registration area. Since 1933, the Death Registration area has included all of the U.S.
- Annual numbers of deaths by sex, age group, and cause for the period 1979-2007. Generally, a new year of data is received each year. In addition, revised data are often available for years beginning with 1999. (1999 was the starting year of the latest international classification of diseases - ICD10.)
- The monthly number of births, by sex, for years 1938-2007. These data are updated annually, when the NCHS provides an additional year of data.
- The number of infant deaths, by age, sex, and age group, ${ }^{8}$ for years 1938-2007. These data are updated annually, when the NCHS provides an additional year of data.
- Deaths for 1995 and 1996 by sex, 4 marital statuses, and 21 age groups. The age groups are generally 5-year age groups and are as follows: $0,1-4,5-9,10-14, \ldots, 95+$). These data are updated as resources are available.
- The population of states in the Death Registration area by age group ${ }^{9}$ and sex, for years 1900-1939. These data are not updated.
- The number of registered deaths, by sex and age groups (85-89, 90-94, and 95+), for the years 1900-1967. These data are not updated.

U.S. Census Bureau Data -

- Estimates of the July 1 resident population by single year of age (0 through 100+) for years 1980-2007. Each year, Census provides an additional year of data and updated data for years after the most recent decennial census.
- From the Current Population Survey (CPS), the population by sex, marital status, and

[^6]age group ${ }^{10}$ for the years 1995 and 1996. These data are updated as resources are available.

- The resident population by sex, marital status, and age group, ${ }^{11}$ as of as of July 1, 1995 and 1996. These data are updated when new NCHS death data by marital status are incorporated.
- The resident population at ages 75-79 and 80-84, by sex, for years 1900-1940 (at ten year intervals). These data are not updated.
- The resident population, by sex and age group, ${ }^{12}$ for 1940-2000. These data are not updated.

CMS Data -

- Annual numbers of deaths, by sex and single year of age (ages 65 and over), for the period 1968-2007. These data are updated annually, when the CMS provides an additional year of data.
- Annual numbers of Medicare enrollments (who are insured for Social Security benefits), by sex and single year of age (ages 65 and over), for the period 1968-2008. These data are updated annually, when the CMS provides an additional year of data.

Other input data -

- From a previous year’s Trustees Report, the July 1, 1995 and 1996, Social Security area population by sex, marital status, and single year of age (5 through 100+). These data are updated when new NCHS death data by marital status are incorporated.

[^7]
1.2.c. Development of Output

Equation 1.2.2 - Average Annual Percentage Reduction in the Central Death Rates (${ }_{y} A A_{x}$)

The ${ }_{y} A A_{x}$, by sex and cause, are calculated based on the decline in the ${ }_{y} M_{x}$ for the period 1997 through 2007, and distributed by 21 age groups, ${ }^{13} 2$ sexes, and 5 causes of death. ${ }^{14}$ The values are calculated as the complement of the exponential of the slope of the least-squares line through the logarithms of the ${ }_{y} M_{x}$.

The ultimate assumed values for the central death rates (${ }_{y} A A_{x}^{u}$), as set by the Board of Trustees of the OASI and DI Trust Funds, are assumed to be reached in the $25^{\text {th }}$ year of the 75 -year projection period. The assumed ultimate values are specified by five causes of death for the following five age groups: under age 15, 15-49, 50-64, and 65-84, and 85 and older. Male and female values are set equal.

The values of ${ }_{y} A A_{x}$, by the 21 age groups, sex, and cause, for 2008 through 2011, are assumed to equal the average ${ }_{y} A A_{x}$ based on the decline in the ${ }_{y} M_{x}$ for the period 1997-2007. For years after 2011, a method of graduation is used that causes the absolute difference between the current ${ }_{y} A A_{x}$ and the ultimate ${ }_{y} A A_{x}^{u}$ to decrease rapidly until it reaches the Trustees' ultimate assumed value, ${ }_{y} A A_{x}^{u}$. This is accomplished by repeating the following steps for each of the first 25 years of the projection:

1. The absolute value of the distance between the prior year's calculated ${ }_{y} A A_{x}$ and the ultimate assumed ${ }_{y} A A_{x}^{u}$ is calculated.
2. If the ultimate assumed ${ }_{y} A A_{x}^{u}$ is greater than the prior year's ${ }_{y} A A_{x}$, then 80 percent of the difference is subtracted from the ultimate assumed ${ }_{y} A A_{x}^{u}$. If the ultimate assumed ${ }_{y} A A_{x}^{u}$ is less than the prior year's ${ }_{y} A A_{x}$, then 80 percent of the difference is added to the ultimate assumed ${ }_{y} A A_{x}^{u}$.
3. These steps are repeated until the $25^{\text {th }}$ year at which time the ${ }_{y} A A_{x}$ are set equal to their ultimate assumed values, ${ }_{y} A A_{x}^{u}$.
[^8]
Equation 1.2.1 - Central Death Rates (${ }_{y} M_{x}$)

Values of ${ }_{y} M_{x}$ are determined for each historical and projected year by the 21 age groups, 2 sexes, and 5 causes of death. The starting year for the projections of the ${ }_{y} M_{x}$ is 2007, and is the most recent data year in the historical period. However, instead of using the historical data for ${ }_{y} M_{x}$ in this year as the starting point for mortality projections, starting ${ }_{y} M_{x}$ values are calculated to be consistent with the trend inherent in the last 12 years of available data. Each starting value for the ${ }_{y} M_{x}$, by sex and cause of death, is computed as the value for the most recent year falling on a weighted least square line, where ${ }_{y} M_{x}$ is regressed on year, over the last 12 years. The weights are $0.2,0.4,0.6$, and 0.8 for the earliest four years of the 12 years and are 1.0 for all other years.

For years after 2007, ${ }_{y} M_{x}$ are projected, by sex and cause of death, by applying the respective ${ }_{y} A A_{x}$ to the prior year ${ }_{y} M_{x}$.

Equations 1.2.3 - Probabilities of death $\left(q_{x}\right)$

In order to project population by age and sex, probabilities of death are applied to determine the projected number of deaths that will occur in the population. These probabilities, denoted as q_{x}, reflect the probability a person age x will die within one year, where x refers to age last birthday as of the beginning of each year. For each year in the historical and projection period, separate q_{x} series are estimated by sex.

Different methods of projecting q_{x} are used for age 0 , for ages 1 through 4, for ages 5 through 94, and for ages 95 and above. The following descriptions provide a brief discussion of these different methods. Additional detail is provided in Actuarial Study number 120. This study, titled Life Tables for the United States Social Security area 1900-2100, can be accessed at the following internet site:
http://www.socialsecurity.gov/OACT/NOTES/s2000s.html. (Choose study number 120.)

- Values for q_{x} at Age 0: During the first year of life, mortality starts at an extremely high level, which becomes progressively lower. This is unlike mortality at other ages, which does not change very much within a single year of age. Thus, it is particularly important at age 0 to estimate accurately the pattern of mortality throughout the year of age, as described above, for the calculation of q_{0}. For the period 1940 through the last historical year, q_{0} is calculated directly from tabulations of births by month and from tabulations of deaths at ages 0, 1-2, 3-6, 7-28 days, 1 month, 2 months, ..., and 11 months. After the last historical year, q_{0} is calculated from ${ }_{l} M_{0}$, assuming that the ratio of q_{0} to ${ }_{l} M_{0}$ measured for the last historical year would remain constant thereafter.
- Values for q_{x} at Ages 1 - 4: For the period 1940 through the last year of historical data, probabilities of death at each age 1 through $4\left(q_{x}, \mathrm{x}=1,2,3,4\right)$ are calculated from tabulations of births by year and from tabulations of deaths at ages $1,2,3$, and 4 years.

After the last historical year, each q_{x} (where $\mathrm{x}=1,2,3,4$) is calculated from ${ }_{4} M_{1}$ assuming that the ratio of q_{x} to ${ }_{4} M_{I}$ measured for the last historical year would remain constant thereafter.

- Values for q_{x} at Ages 5 - 94: Probabilities of death for these ages are calculated from the projected central death rates, ${ }_{5} M_{x}$. As mentioned above, the calculations are discussed in detail in Actuarial Study number 120.
- Values for q_{x} at Ages $95+$: It has been observed that the mortality rates of women, though lower than those of men, tend to increase faster with advancing age than those of men. An analysis of Social Security charter Old-Age Insurance beneficiaries has shown that at the very old ages mortality increases about five percent per year of age for men and about six percent per year for women. For men, probabilities of death at each ages 95 and older are calculated as follows:

$$
\begin{array}{ll}
q_{x}=q_{x-1} \cdot\left(\frac{q_{94}}{q_{93}} \cdot \frac{99-x}{5}+1.05 \cdot \frac{x-94}{5}\right) & x=95,96,97,98,99 \\
q_{x}=1.05 \bullet q_{x-1} & x=100,101,102, \ldots
\end{array}
$$

For women, the same formulas are used, except that 1.06 is substituted for 1.05 . The larger rate of growth in female mortality would eventually, at a very high age, cause female mortality to be higher than male mortality. At the point where this crossover would occur, female mortality is set equal to male mortality.

The values of q_{x} used in projecting the population are based on age last birthday and are calculated by sex for $1_{1 / 2} q_{0}$ (neonatal) and for q_{x}, where x represents age last birthday for ages 0 through 100 (with 100 representing the age group 100 and older). Because life table values of probabilities of death are based on exact ages, values for q_{x} representing age last birthday are derived as follows:

$$
\begin{array}{ll}
\mathrm{y}_{1} \mathrm{q}_{0}=1-\mathrm{L}_{0} / \mathrm{l}_{0} & \text { for neonatal } \\
\mathrm{q}_{\mathrm{x}}=1-\mathrm{L}_{\mathrm{x}+1} / \mathrm{L}_{\mathrm{x}} & \text { for ages } 0 \text { to } 99 \\
\mathrm{q}_{100}=1-\mathrm{T}_{101} / \mathrm{T}_{100} & \text { for age group } 100 \text { and older }
\end{array}
$$

See Actuarial Study number 120 for the definitions of the life table terms. This study can be accessed at the following internet site:
http://www.socialsecurity.gov/OACT/NOTES/s2000s.html. (Choose study number 120; then section IV.A in the table of contents.)

In addition, probabilities of death are broken down further into marital status. Historical data indicate differential in mortality by marital status is significant. To reflect this, projected relative differences in death rates by marital status are projected to be the same as observed during calendar years 1995 and 1996.

Equation 1.2.4 -Life expectancy
Actuarial Study number 120 presents background information on the calculation of life expectancy, $\stackrel{\circ}{e}_{x}$, from the probabilities of death $\left(q_{x}\right)$. This study can be accessed at the following internet site: http://www.socialsecurity.gov/OACT/NOTES/s2000s.html. (Choose study number 120; then IV.A in the table of contents.)

Appendix: 1.2-1

The Board of Trustees of the OASDI Trust Funds sets the ultimate rates of mortality reduction by age group and cause of death. For comparison purposes, rates are also presented for two historical periods. Note that although the ultimate rates are the same for males and females, the historical rates differ.

Annual Rates of Reduction in Central Death Rates by Age Group, Sex and Cause

	Historical		Alternative II*	Historical		Alternative II*
			2012 TR			2012 TR
	1979 to 2007	1997 to 2007	2036-2086	1979 to 2007	1997 to 2007	2036-2086
Under Age 15	Male			Female		
Cardiovascular Disease	2.74	4.41	2.3	2.59	4.12	2.3
Cancer	2.61	1.29	1.5	2.15	1.09	1.5
Violence	2.95	2.64	1.0	2.33	1.97	1.0
Respiratory Disease	3.02	1.59	2.0	3.11	2.27	2.0
Other	2.56	1.15	1.7	2.46	1.25	1.7
Resulting Total **	2.66	1.56	1.55	2.45	1.49	1.57
Ages 15-49	Male			Female		
Cardiovascular Disease	2.13	1.14	1.5	1.23	0.53	1.5
Cancer	1.78	2.28	1.5	1.59	1.64	1.5
Violence	0.93	-0.83	0.7	0.21	-2.01	0.7
Respiratory Disease	0.94	1.07	0.5	-0.11	0.43	0.5
Other	-0.37	1.71	0.8	-0.73	-0.45	0.8
Resulting Total **	1.02	0.54	0.87	0.54	-0.13	0.94
Ages 50-64	Male			Female		
Cardiovascular Disease	3.17	2.95	2.2	2.56	3.10	2.2
Cancer	1.51	1.90	1.5	1.18	1.90	1.5
Violence	0.72	-2.75	0.5	0.15	-3.81	0.5
Respiratory Disease	1.22	0.97	0.7	-0.72	1.03	0.7
Other	-0.38	-2.02	0.6	-0.45	-1.24	0.6
Resulting Total **	1.75	1.04	1.05	1.10	1.19	1.06
Ages 65-84	Male			Female		
Cardiovascular Disease	3.02	4.38	2.2	2.62	3.79	2.2
Cancer	0.55	1.71	0.9	-0.40	0.68	0.9
Violence	0.76	0.12	0.5	0.07	-0.85	0.5
Respiratory Disease	0.33	2.08	0.3	-2.69	0.28	0.3
Other	-0.83	-0.87	0.3	-1.65	-1.70	0.3
Resulting Total **	1.44	2.27	0.78	0.57	1.25	0.73
Ages 85 and older	Male			Female		
Cardiovascular Disease	1.37	2.58	1.2	1.52	2.65	1.2
Cancer	-0.67	0.91	0.5	-0.75	0.05	0.5
Violence	-0.70	-0.31	0.3	-0.95	-1.88	0.3
Respiratory Disease	-1.32	1.81	0.2	-2.57	0.30	0.2
Other	-2.39	-2.33	0.2	-3.35	-3.42	0.2
Resulting Total **	0.04	1.06	0.53	-0.08	0.43	0.50
Total	Male			Female		
Cardiovascular Disease	2.49	3.44		2.14	3.15	
Cancer	0.64	1.64		0.16	0.96	
Violence	0.84	-0.77		0.20	-1.75	
Respiratory Disease	-0.06	1.87		-2.27	0.38	
Other	-0.85	-1.04		-1.57	-1.96	
Resulting Total **	1.12	1.59	0.75	0.49	0.88	0.71

[^9]
1.3. LEGAL IMMIGRATION

1.3.a. Overview

Legal immigration is defined as those persons who have been admitted into the United States and been granted legal permanent resident (LPR) status. Legal emigration consists of legal permanent residents and U.S. Citizens who depart the Social Security area population to reside elsewhere.

For each year z of the projection period, the LEGAL IMMIGRATION subprocess produces estimates of legal immigration (L^{z}) and legal emigration $\left(E^{\mathrm{z}}\right)$, by age and sex, based on assumptions set by the Trustees for each category. In addition, the LEGAL IMMIGRATION subprocess disaggregates the estimates of L^{Z} into those who have been admitted into the United States during the year $\left(N E W^{2}\right)$ and those who adjusted from the other-immigrant population to LPR status ($A O S^{2}$).

Each fiscal year, ${ }^{15}$ the Department of Homeland Security (DHS) collects data on the number of persons granted LPR status by age, sex, and class of admission. The U.S Census Bureau provided OCACT with an unpublished estimate of the annual number of legal emigrants, by sex and age, based on the change between the 1980 and 1990 censuses. These historical data are used as a basis for developing age-sex distributions that are applied to the Trustees' aggregate immigration assumptions to produce annual legal immigration and emigration estimates by age and sex.

The primary equations of LEGAL IMMIGRATION, by age (x) and sex (s), for each year (z) of the 75 -year projection period are summarized below:

$$
\begin{align*}
& N E W_{x, s}^{z}=N E W_{x, s}^{z}(\cdot) \tag{1.3.1}\\
& A O S_{x, s}^{z}=A O S_{x, s}^{z}(\cdot) \tag{1.3.2}\\
& L_{x, s}^{z}=N E W_{x, s}^{z}+A O S_{x, s}^{z} \tag{1.3.3}\\
& E_{x, s}^{z}=E_{x, s}^{z}(\cdot) \tag{1.3.4}\\
& N L_{x, s}^{z}=L_{x, s}^{z}-E_{x, s}^{z} \tag{1.3.5}
\end{align*}
$$

1.3.b. Input Data

Trustees Assumptions -

Each year the Board of Trustees of the OASDI Trust Funds specifies the total annual assumed values for legal immigration and legal emigration. For the 2012 Trustees Report, the ultimate

[^10]values for legal immigration and emigration are 1,000,000 and 250,000, respectively (both reached in 2012).

Office of Immigration Statistics -

- Historical legal immigration by fiscal year (1941-1995), 5-year age group (0-4, 5-9, ..., 80-84), and sex. These data will not be updated.
- Legalizations due to IRCA by 5-year age group and sex for the years 1989-1996. These data will not be updated.

Department of Homeland Security -

- Historical legal immigration by fiscal year (1996-2010), single year of age (0 through 99), sex, and class of admission (New Arrival, Adjustment of Status, Refugee, and Asylee). These data are updated annually, with the DHS providing an additional year of data each year.
- Total adjustments of status for the years 1966 to 1995 (OCACT further estimates total adjustments of status for 1963-1965). These data will not be updated.

U.S. Census Bureau -

- Unpublished estimates of annual legal emigration by five-year age groups (0-4, 5-9, ..., 80-84) and sex for 1990 based on the change between the 1980 and 1990 censuses. These data are updated occasionally (based on having new data from an outside source and on OCACT resource time constraints).

Other input data -

- Legal emigration conversion factors. These estimates were developed internally by fiveyear age groups ($0-4,5-9, \ldots, 80-84$) and sex to reflect the fact that the estimated number of people leaving the United States is not equivalent to the number of people leaving the Social Security area. These data are updated when annual legal emigration estimates are updated (see above).

1.3.c. Development of Output

Equations 1.3.1 and 1.3.2 - Legal Immigration

The Trustees specify the aggregate amount of legal immigration for each year of the 75-year projection period. In order to incorporate the numbers of new immigrants into the Social

Security area population projections, the total level of new immigrants is disaggregated by age and sex.

There are two ways for an immigrant to be admitted into the U.S. for lawful permanent residence:
(1) New arrivals, such as persons living abroad who are granted an LPR visa and then enter the U.S. through a port of entry. Refugees and asylees that are granted LPR status are also treated as new arrivals in the OCACT model.
(2) Adjustments of status, who are people already residing in the U.S. as other immigrants and have an application for adjustment to LPR status approved by the DHS.

The DHS provides data on legal immigrants by sex, single year of age, classification of admission, and fiscal year of entry. The 10 most recent years of data are used to calculate separate age-sex distributions for both new arrivals and adjustments of status by taking the following steps:

1. Refugee and Asylee LPR admissions are subtracted from the adjustment of status data and added into the new arrival category.
2. The data are converted from fiscal year data to calendar year data.
3. For each class of admission, new arrival and adjustment of status, the historical data for the last 10 years (from 2001-2010) are combined into an average age-sex distribution.
$N E W_{x, s}^{z}$, the expected number of new arrival legal immigrants by age (x) and sex (s), is calculated by applying the age-sex distribution for new arrivals to the Trustees assumed level of new arrivals. The Trustees' assumed number of adjustments of status is multiplied by the agesex distribution of adjustments of status to calculate $A O S_{x, s}^{z}$.

Equation 1.3.4 - Legal Emigration

The Trustees specify the aggregate amount of legal emigration for each year of the projection period. This is done by setting the ratio of emigration to legal immigration. For the 2012 Trustees Report, the ratio is set at 25 percent.

In order to produce the number of emigrants from the Social Security area population, the total level of emigrants is disaggregated by age and sex. The disaggregation is based on a distribution of emigrants, by sex and five-year age groups, provided to OCACT in unpublished estimates by Census that are based on changes between the 1980 and 1990 censuses. Since the emigration numbers estimated by Census are for all people leaving the United States, they are adjusted downward by a series of conversion factors so the data correspond to the number of people leaving the Social Security area population.

For each sex (s), the Beers formula is used to interpolate and distribute each five-year age group into a single year of age (x) distribution, EDIST $_{\mathrm{x}, \mathrm{s}}$. For each projection year, this distribution is used to distribute the assumed level of total legal emigrants by age and sex using the following equation:

$$
E_{x, s}^{z}=.25\left(\sum_{s=m}^{f} \sum_{x=0}^{84} L_{x, s}^{z}\right)^{*} E D I S T_{x, s}
$$

1.4. HISTORICAL POPULATION

1.4.a. Overview

For each historical year, the HISTORICAL subprocess provides estimates of the Social Security area population for the period 1941 through 2010. The Social Security area population consists of:

- U.S. resident population and armed forces overseas plus
- Net census undercount plus
- Civilian residents of Puerto Rico, the Virgin Islands, Guam, the Northern Mariana Islands, and American Samoa plus
- Federal civilian employees overseas plus
- Dependents of armed forces and federal civilian employees overseas plus
- Residual beneficiaries living abroad plus
- Other citizens overseas

The U.S. Census Bureau collects population data and tabulates it by age, sex, and marital status every ten years for the decennial census. The decennial census includes data from the 50 states, the District of Columbia, U.S. territories and citizens living abroad. Each subsequent year, the Census Bureau publishes an estimate of the post-censal population. This subprocess combines these census and post-censal estimates, along with the estimates of the other components of the Social Security area population listed above, and components of change described in sections 1.1 to 1.3 to develop estimates of the total Social Security area population $\left(P_{x, s}^{z}\right)$ and other than legal population ($O_{x, s}^{z}$). Combining the total populations by single year of age and sex with an estimated marital status matrix provides the total Social Security area population by single year of age, sex, and marital status ($P_{x, s, m}^{z}$). These estimates are then used as the basis for the PROJECTED POPULATION subprocess described in section 1.8. The primary equations for this subprocess, 1.4.1, 1.4.2, and 1.4.3, are given below:

$$
\begin{align*}
& P_{x, s}^{z}=P_{x, s}^{z}(\cdot) \tag{1.4.1}\\
& P_{x, s, m}^{z}=P_{x, s, m}^{z}(\cdot) \tag{1.4.2}\\
& O_{x, s}^{z}=O_{x, s}^{z}(\cdot) \tag{1.4.3}
\end{align*}
$$

1.4.b. Input Data

Long-Range OASDI Projection Data -

Demography

- Probabilities of death from MORTALITY, by age last birthday and sex, for years 1941-2010. These data are updated every year.
- The number of new legal immigrants by age and sex for years 1941-2009. These data are from the LEGAL IMMIGRATION subprocess and are updated each year.
- The number of legal emigrants by age and sex for years 1941-2009. These data are from the LEGAL IMMIGRATION subprocess and are updated each year.
- The number of adjustments of status by age and sex for years 1941-2009. These data are from the LEGAL IMMIGRATION subprocess and are updated each year.
- The number of "other immigrants" legalized under the Immigration Reform and Control Act of 1986 (IRCA) from LEGAL IMMIGRATION. These data are reproduced each year.
- Birth rates by single year of age of mother (14-49) for the years 1941-2010 from the FERTILITY subprocess. These data are updated each year.

U.S. Census Bureau Data -

- Decennial census population estimates, by single year of age and sex, for 1970, 1980, 1990 and 2000, and total residential and residential plus armed forces overseas populations for January 1 of each Census year. These figures, along with the undercounts mentioned below, are used to create a total January 1 residential plus armed forces overseas population, including residential undercounts. A new estimate is created about every ten years.
- Estimates of U.S resident population and Armed Forces population overseas as of each July 1 (1940-1979) by sex and single-year of age through 84, and for the group aged 85 and older. These data are not updated.
- Estimates of the U.S. resident population for each Census (April 1) 1970 - 2000 by sex and single year of age 0 through $85+$. A new estimate is created about every ten years.
- Estimates of total U.S. residential population and total residential population plus

Armed Forces overseas population for each January of each Census year from 1990 and 2000. A new estimate is created about every ten years.

- Estimates of U.S resident population, and U.S. resident plus Armed Forces population overseas as of each July 1 (1980-2010) by sex and single-year of age 0 through 99, and ages 100 and older. Generally, the U.S. Census Bureau restates the data back to the most recent decennial census and includes one additional year of data.
- Estimates of the population by age group, ${ }^{16}$ sex, and marital status for years 19402010. An additional year of data is added for each Trustees Report.
- Estimates of the population by marital status, which have more age groups than the CPS, and sex for years 1982-1989 and 1992-2000. These data are not updated.
- Undercount factors by single year of age (0-85+) and sex, estimated using postcensal survey data. These data are updated after each decennial census.
- The total annual civilian population estimates for Puerto Rico, Virgin Islands, Guam, Northern Marianas, and American Samoa for years 1951-2010. For each Trustees Report, an additional data year is downloaded from the U.S. Census Bureau's international database. Historical data back to 1951 is also obtained if any changes have occurred.
- Decennial Census population estimates, by varying degree of age detail and sex, for each Census starting in 1940 for territories and components outside the 50 states, D.C., and armed forces overseas. Most data is aggregated into 18 age groups for each sex. As of 2000, single year of age and sex data was available for Puerto Rico, Virgin Islands, Guam, and American Samoa. New estimates are available about every ten years.
- From the U.S. Census Bureau 1980 Census of Population, Subject Report on Marital Status No. PC80-2-4C, number of existing marriages in 1980 by age group of husband crossed with age group of wife. These data are not updated.
- Estimates of total net immigration of the U.S. residential plus armed forces overseas (USAF) population from 2000 through 2008. A regression from 2000 through 2008 estimates the net immigration for 2009 and 2010.
- Total Americans overseas estimate based on international data sources and estimates of federal employees and military in Iraq and Afghanistan. The data from the

[^11]various international sources are derived from different years but center around the year 2003. Additional data will be updated as they become available.

Other input data -

- From the Centers for Medicare and Medicaid (CMS), Medicare enrollments by single year of age ($85-100+$) and sex for years 1968-2010. The last year of data is provisional. Each year, the CMS provides a final year of data to replace the prior year's provisional data, and a new provisional year of data.
- From the Department of State, old historical total estimates of outside area populations (federal employees overseas, overseas dependents of federal employees and military, and other Americans overseas.
- The SSA Annual Statistical Supplement provides estimates of the total number of OASDI Beneficiaries living abroad for years 1980-2010. For each Trustees Report, an additional year of data is available.
- Output from the Urban Institute's microsimulation model, Polisim, regarding marriage prevalence for the period 1980-2010 by age of husband and age of wife. For each Trustees Report, the data may be revised and an additional year of data may be added.
- From the National Center for Health Statistics (NCHS), the sex ratio (number of males born per female) for years 1941 - 2008. Each year, NCHS provides another year of data. For 2009, the sex ratio is assumed to be the average of the latest 5 years of actual data. For 2010, the sex ratio is assumed to be 1.05 , the same as the assumed projected sex ratio.
- From the Department of Homeland Security (DHS), the total number of other immigrants (unauthorized immigrants plus nonimmigrants) from 2005 - 2010.
- From the Office of Personnel Management (OPM), total estimates of the number of federal employees overseas from July 1998 - July 2009. The July 2010 value is assumed to be equal to the July 2009 value. These estimates are updated as they become available on the OPM website.
- From the OPM, the number of federal employees overseas by single year of age and sex from a subset of the OPM data source above. Years 1980 - 2010 are available. These estimates are updated as they become available.

1.4.c. Development of Output

Equation 1.4.1 - Historical Population by age and sex ($\left.P_{x, s}^{z}\right)$
The Census Bureau's estimate of the residents of the 50 States, D.C., and U.S. Armed Forces overseas is used as a basis for calculating $P_{x, s}^{z}$. The base estimate is adjusted for net census undercount and increased for other U.S. citizens living abroad (including residents of US territories) and for non-citizens living abroad who are insured for Social Security benefits.

The estimates of the number of residents of the fifty States and D.C. and Armed Forces overseas, as of July 1 of each year, by sex for single years of age through 84, and for the group aged 85 or older, are obtained from the Census Bureau. Adjustments for net census undercount are estimated using post-censal survey data from the Census Bureau. Population counts over age 65 after the last Census year are modified to be consistent with OCACT mortality and Census USAF net immigration data. The numbers of persons in the other components of the Social Security area as of July 1 are estimated by sex for single years of age through 84, and for the group aged 85 or older, from data of varying detail. Numbers of civilian residents of Puerto Rico, the Virgin Islands, Guam, American Samoa, and the Northern Mariana Islands are estimated from data obtained from the Census Bureau. Numbers of Federal civilian employees overseas are based on estimates from the Office of Personnel Management (OPM). Dependents of Federal civilian employees and Armed Forces overseas are based on the stock of Federal civilian employees from OPM and the stock of armed forces overseas from the Census Bureau. Other citizens overseas covered by Social Security are also based on estimates compiled by the Census Bureau. The overlap among the components, believed to be small, is ignored.

The first step of the process is to estimate $P_{x, s}^{z}$ as of January $1^{\text {st }}$ for certain "tab years" (1941, 1951, 1957, 1961, each decennial Census year [1970 through 2000], and the last year of historical data [2010 for the 2012 Trustees Report]). For ages 0-84, $P_{x, s}^{z}$ for each tab year is set equal to the averaged surrounding July 1 U.S. population and armed forces overseas counts from the Census Bureau (modified by OCACT mortality rates and Census USAF net immigration for ages over 65 and years past 2000) plus an undercount adjustment plus other component populations. For ages 85 and over, $P_{x, s}^{z}$ for each tab year is set equal to [Built Up Pops Age x, Sex s] * [Total 85+ for Sex s]/[Total Built Up 85+ for Sex s], where the built up estimates are created by taking into account deaths and immigration data from the previous tab year and [Total $85+$ for Sex s] is the sum of the averaged surrounding July 1 U.S. population and armed forces overseas counts from the Census Bureau (modified by OCACT mortality rates and Census USAF net immigration for years past 2000) plus an undercount adjustment plus other component populations for ages 85 and over for each sex.

For years between the tab years, populations are estimated taking into account the components of changes due to births, deaths, legal emigration, adjustments of status, and legal immigration
during that time period. These estimates are then multiplied by the appropriate age-sex-specific ratios so that the error of closure at the tab years is eliminated.

Equation 1.4.2 - Historical Population by age, sex, and marital status ($P_{x, s, m}^{z}$)

Since eligibility for auxiliary benefits is dependent on marital status, the Social Security area population is disaggregated by marital status. The four marital states are defined as single (having never been married), married, widowed, and divorced.

The distribution of the number of existing marriages for 1980 and later is based on the 1980 Census Marital Status Report, which contains the number of married couples in 1980 by age group of husband crossed with age group of wife. Additional tabulations from the Polisim model for 1980 through 2010 are incorporated to adjust these marital prevalence grids for changes since 1980. Multiplying the previous year values by the ratio of the current year Polisim values to the previous year Polisim values ensures that the 1980 and later grids are consistent with the pre1980 grids. The grids are transformed from age grouped numbers to single year of age figures from ages 14 to $100+$ for husband and wife using the two dimensional H.S. Beers method of interpolation.

Percentages of single, married, widowed, and divorced persons are calculated by taking the estimate for each marital status category and dividing them by the total number of people for each age group and sex based on either the CPS or the more detailed Census numbers, if available. Then, for each sex, if one age group has a higher or lower percentage than the surrounding age groups, an average of the surrounding groups replaces the original value. After verifying the percentages are close to the original data (and adjusted if needed), these percentages are multiplied by the total populations calculated in Equation 1.4.1 for each age, sex, and year to get a preliminary population for each age, sex, and marital status.

To keep the marriage prevalence grids and the marital status percentages smooth and consistent, several algorithms are used. First, the married population is adjusted so that the number of married males equals the number of married females. Next, the marital prevalence grids are smoothed so that each age of husband crossed with age of wife cell is an average of values in its diagonal in the grid. Then, the number of married persons for each age and sex is set equal to the marginal total of the associated year's marital prevalence grid. Finally, the other marital statuses population totals are adjusted to keep the total number of people in all marital statuses the same as calculated before splitting into marital statuses.

Equation 1.4.3 - Historical Other Than Legal (OTL) Population by age and sex ($O_{x, s}^{z}$)

This subprocess also estimates historical levels of "other immigrants" in the population, by age and sex, for input to the Economics process. For each year, an initial net residual estimate by single year of age and sex is backed out from estimates of beginning and end of year populations,
births, deaths, legal immigrants, adjustments of status, and legal emigrants. This net residual equals the implied initial other in minus other out. These residuals are then modified to ensure reasonableness. Next, using these modified net residuals, along with adjustments of status and OTL deaths (using the same death rates as for the total population), an initial OTL stock is built. These stocks are then modified to ensure reasonableness. After 2000, one further adjustment is done to the stocks. From January 2001 through January 2004, the total OTL populations are set equal to the values that linearly grade from the final OCACT January 2000 total OTL population to the DHS January 2005 total OTL population. From January 2005 through January 2010, the total OTL population is forced to match the DHS total OTL population estimates. The total OTL population from the DHS is equal to the sum of their estimates for unauthorized immigrants and nonimmigrants. Nonimmigrants include categories such as students, temporary workers, and exchange visitors.

1.5. OTHER IMMIGRATION

1.5.a. Overview

The term "other immigration" refers to persons entering the U.S. in a manner other than being lawfully admitted for permanent residence and who reside in the U.S. for at least 6 months. This includes temporary immigrants (persons legally admitted for a limited period of time, such as temporary workers and foreign students) in addition to undocumented immigrants living in the U.S. Other emigration includes other immigrants who depart the Social Security area for another country, in addition to those who adjust status to become LPRs.

For each year z of the projection period, the OTHER IMMIGRATION subprocess produces estimates of other immigration $\left(O^{z}\right)$, by age and sex, based on assumptions set by the Trustees for each category. Estimates of projected other emigration are not developed in this subprocess, but rather are developed in the PROJECTED POPULATION subprocess, documented in section 1.8.

The Census Bureau estimated the aggregate number of net other immigrants who entered the country during 1975-1980, by age and sex. These historical data are used as a basis for developing age-sex distributions that are applied to the Trustees' aggregate other immigration assumptions to produce annual other immigration estimates by age and sex.

The primary equations of OTHER IMMIGRATION, by age (x) and sex (s), for each year (z) of the 75-year projection period are summarized below:

$$
\begin{equation*}
O_{x, s}^{z}=O_{x, s}^{z}(\cdot) \tag{1.5.1}
\end{equation*}
$$

1.5.b. Input Data

Trustees Assumptions -

Each year the Board of Trustees of the OASDI Trust Funds specifies the total annual assumed values for other immigration. The Trustees set the ultimate annual level at 1,500,000 persons per year for each year beginning in 2015. Due to the recent recession, they assume that the level of other immigration was 1,000,000 in 2010, and will increase by 100,000 each year until 2015 when the ultimate is reached.

Long-Range OASDI Projection Data -

Demography

- Historical and projected probabilities of death by age last birthday (including a neonatal mortality factor, single year of age for ages 0-99, and age group 100+) and sex, for years

1941-2101. These data are updated each year.

- Social Security area population by single year of age (84-100+), sex, and marital status, for the year 2000. These data are updated each year.
- Historical new arrivals by single year of age (0-83 and 84+) and sex for years 1941-2009. These data are updated each year.
- Historical adjustments of status by single year of age (0-83 and 84+) and sex for years 1941-2009. These data are updated each year.
- Historical adjustments of status by single year of age (0-99) and sex, for years 19962010. These data are updated each year.

Department of Homeland Security -

- Components of the Unauthorized Immigrant Population by year for 2005-2010, used to calculate undercount factors. These data are updated each year.
- Recent arrivals by 5-year age group and sex for 2006. These data are updated occasionally (based on having new data from an outside source and on OCACT resource time constraints).
- An estimate of the size of the other immigrant population as of January 1, 2006. These data are updated occasionally (based on having new data from an outside source and on OCACT resource time constraints).

U.S. Census Bureau -

- From the American Community Survey (ACS), foreign-born new arrivals by ACS year (2000-2010), entry year (1900-2010), age ($0-100$) and sex. These data are updated each year.
- Unpublished tabulations of the cumulative number of net other immigrants entering the country during 1975-1980 by five-year age groups ($0-4,5-9, \ldots, 80-84$) and sex. These data are updated occasionally (based on having new data from an outside source and on OCACT resource time constraints).
- Foreign born non-citizen population by 5-year age groups (0-4, 5-9, ..., 80-84, 85+) and sex from the March 2000 Current Population Survey. These data are updated occasionally (based on having new data from an outside source and on OCACT resource time constraints).

Other input data -

- Internally developed total estimated number of non-immigrants in 1990 and 2000. These data will not be updated.
- Internally developed persistence factors. These data will not be updated.
- Estimate of the residual immigrant population by age group (0-17, 18-49, 50-64, and $65+$) and sex as of January 1, 1990 and 2000, from Population Division Working Paper $61 .{ }^{17}$ These data will not be updated.
- Internally developed age distribution factors to smooth out age 0-4 foreign born population into single year of age. These data will not be updated.
- Internally developed alternate estimate of the net other population during the period 2000-2005. These data will not be updated.

1.5.c. Development of Output

Equation 1.5.1 - Other Immigration

The Trustees specify the aggregate amount of other immigrants for each year of the projection period. For each projection year, an age-sex distribution is used to distribute this assumption by age and sex. This age-sex distribution is denoted as ODIST $_{\mathrm{x}, \mathrm{s}}$ and is developed from a weighted average of the age-sex distribution of adjustments of status from Equation 1.3.2 and an age-sex distribution of non-adjusting other immigrants.

The age distribution of the adjustments of status is modified to incorporate a five-year setback based on the assumption that adjustments of status enter the U.S. five years earlier, on average. This age-sex distribution is denoted as ODIST1 $1_{\mathrm{x}, \mathrm{s}}$. The age distribution of non-adjusting other immigrants, ODIST2 ${ }_{x, s}$, is derived from an unpublished census estimate of net other immigration during the period 1975-80, using internally developed levels of persistence. The two age distributions are then combined using the following formula:

$$
O D I S T_{x, s}=w\left(O D I S T 1_{x, s}\right)+(1-w) O D I S T 2_{x, s}
$$

where w is a weighting factor equal to the Trustees ultimate assumed level of adjustments of status increased by a factor ${ }^{18}$ of 1.25 divided by the Trustees ultimate assumed level of other immigration. For the 2012 Trustees Report, this w equals 0.417 . The assumed total level of

[^12]other immigration is denoted by $T O^{z}$. Thus, for each year (z) other immigration is defined by the following equation:
$$
O_{x, s}^{z}=T O^{z} * O D I S T_{x, s}
$$

Projected other departures are calculated later in the PROJECTED POPULATION subprocess, using two key inputs that are calculated in the OTHER IMMIGRATION subprocess. Ideally, projected other departures would be modeled utilizing rates of emigration by age, sex, and year of entry. However due to the scarcity of available data on other immigrants, calculating rates of emigration by this level of detail is not feasible at this time. As an alternative, the total level of departures was modeled based on changes in the estimated size of the other immigration population during the time period 2000-05. The total number of other departures during that time was split into two pieces (1) a fixed component that is expressed as a percentage of recent arrivals and (2) a rate based component that varies by age and sex. The rate based component is calculated later in the PROJECTED POPULATION subprocess.

The fixed component, $F D_{x, s}^{z}$, is calculated directly from the age distribution of other immigrants by assuming that the number of fixed exits will come from relatively recent arrivals who do not adjust status. The following equation shows the calculation:

$$
F D_{x, s}^{z}=0.10\left(O_{x-2, s}^{z}\right) * N a d j_{x-2, s}
$$

where $O_{x, s}^{z}$ is the assumed level of other immigration for a given year z, and $N a d j_{x, s}$ is equal to the percentage of new other immigrants who are not expected to have the potential to adjust status. Since $O_{x, s}^{z}$ is constant for each year of the long-range projection period after 2014, the values of $F D_{x, s}^{z}$ remain fixed for each year z.

The remaining numbers of departures, $R D_{x, s}^{z}$, are assumed to be directly influenced by the size of the exposed other immigrant population. Thus, rates of emigration by age (x) and sex (s), $r_{x, s}$, were calculated and averaged over the period 2000-05 as follows:

$$
r_{x, s}=\text { Average }\left[\frac{O D_{x, s}^{z}-F D_{x, s}^{z}}{O P_{x, s}^{z} *\left(1-q_{x, s}^{z}\right)-F D_{x, s}^{z}-A O S_{x, s}^{z}}\right] \text { for } \mathrm{z}=2000,2005
$$

where $O P_{x, s}^{z}$ is an alternate estimation of the historical other than legal population, which is calculated using the total level of the other than legal population in 2000, the Department of Homeland Security (DHS) estimate of the total other than legal population in 2006, probabilities of death, levels of other immigrants, assumed fixed levels of other emigrants, and adjustments of status.

The other than legal population, $O P_{x, s}^{z}$, for the year 2000 is calculated as the sum of the unauthorized population and the non-immigrant ${ }^{19}$ population for that year. The unauthorized population for these two years is calculated by taking the following steps:

1. Compute the foreign born non-citizen age distribution by taking the foreign born noncitizen population by 5 -year age groups (from the Current Population Survey) and applying the Beers method to get single year of age values.
2. Apply this foreign born non-citizen age distribution to the Census residual unauthorized population (from Technical Working Paper 61), after first grouping ages 18-49 of the residual unauthorized population.
3. Regroup the single age values into 5-year age groups, and smooth the data by applying the Beers method to get single year of ages $0-84$.
4. Compute single year of age values for ages 85-100 by applying the same age distribution as the 85-100 SSA population for 2000.

The non-immigrant population is calculated by using the recent arrivals by 5 -year age group (from the DHS) to break out the total estimate of non-immigrants (from the DHS) by 5-year age groups, then applying the Beers method to get single year of age values. Note that in both of the above cases where the Beers method is used, a separate method is used to break out the 0-4 age group, using internally developed factors, since these ages for immigrants would behave differently than the normal population would behave using the Beers method.

The other than legal population by age and sex for a given year (2001-2005) is calculated as:

$$
O P_{x, s}^{z}=O P_{x-1, s}^{z-1} *\left(1-q_{x-1, s}^{z-1}\right)+O_{x-1, s}^{z-1}-O D_{x-1, s}^{z-1}-A O S_{x-1, s}^{z-1}
$$

where $q_{x, s}^{z}$ is the probability of death (calculated in the MORTALITY subprocess), $O_{x, s}^{z}$ is the other immigration, $O D_{x, s}^{z}$ is the number of other departures, and $A O S_{x, s}^{z}$ is the number of adjustments of status.

The HISTORICAL subprocess calculates the historical net other than legal immigration. In the OTHER IMMIGRATION subprocess, these values are further split into other than legal immigration and emigration by age and sex for 1999-2009. The ACS provides the number of foreign born new arrivals which is then used to separate the net other than legal immigration. There are several other key inputs that go into this calculation, including an estimated undercount factor. This factor accounts for (1) differences between the foreign born data from the ACS and the component pieces obtained from DHS, (2) differences between the ACS (Public Use Microdata Sample) and Census' total population, and (3) the foreign born residing in Puerto Rico. The estimated other than legal immigration is calculated by taking the Beers'd foreign

[^13]born from the ACS (after applying the undercount factors) and subtracting the legal new arrivals. The estimated other than legal emigration is then calculated as the difference between the net other than legal immigration (calculated in the HISTORICAL subprocess) and the estimated other than legal immigration. A series of steps are then taken to smooth the two categories.

1.6. MARRIAGE

1.6.a Overview

The National Center for Health Statistics (NCHS) collected detailed data on the annual number of new marriages in the Marriage Registration Area (MRA), by age of husband crossed with age of wife, for the period 1978 through 1988 (excluding 1980). In 1988, the MRA consisted of 42 States and D.C. and accounted for 80 percent of all marriages in the U.S. Estimates of the unmarried population in the MRA, by single year of age (or age group if single year of age was not available) and sex, were obtained from the NCHS. Marriage rates for this period are calculated from these data.

The NCHS stopped collecting data on the annual number of new marriages in the MRA in 1989. Less detailed data on new marriages from a subset of the MRA were obtained for the years 19891995. These data are used to determine marriage rates by adjusting the more detailed age-ofhusband crossed with age-of-wife data from the earlier years to match the aggregated levels for these years.

Age-specific marriage rates ($\hat{m}_{x, y}^{z}$) for a given year z are defined as the ratio of (1) number of marriages for a given age-of-husband (x) crossed with age-of-wife (y) to (2) a theoretical midyear unmarried population at those ages $\left(P_{x, y}^{z}\right)$. The theoretical midyear population is defined as the geometric mean ${ }^{20}$ of the midyear unmarried males and unmarried females.

An age-adjusted central marriage rate ($A \hat{M} R^{z}$) summarizes the $\hat{m}_{x, y}^{z}$ for a given year. The standard population chosen for age adjusting is the unmarried males and unmarried females in the MRA as of July 1, 1982. The first step in calculating the total age-adjusted central marriage rate for a particular year is to determine an expected number of marriages by applying the age-of-husband-age-of-wife specific central marriage rates for that year to the geometric mean of the corresponding age groups in the standard population.

The $A \hat{M} R^{z}$ is then obtained by dividing:

- The expected number of marriages by
- The geometric mean of (a) the number of unmarried males, ages 15 and older, and (b) the unmarried females, ages 15 and older, in the standard population.

[^14]The MARRIAGE subprocess projects annual $\hat{m}_{x, y}^{z}$ by age-of-husband crossed with age-of-wife. The equations for this subprocess, 1.6.1 and 1.6.2, are given below:

$$
\begin{align*}
& \hat{m}_{x, y}^{z}=\hat{m}_{x, y}^{z}(\cdot) \tag{1.6.1}\\
& \hat{A M} R^{z}=\frac{\sum_{x, y} P_{x, y}^{S} * \hat{m}_{x, y}^{z}}{\sum_{x, y} P_{x, y}^{S}} \tag{1.6.2}
\end{align*}
$$

where and x and y refer to the age of males and females, respectively, and $P_{x, y}^{S}$ is the theoretical unmarried population in the MRA as of July 1, 1982 (the geometric mean of the corresponding age groups in the standard population).

1.6.b. Input Data

Long-Range OASDI Projection Data -

Demography

- Estimates of the Social Security area population as of January 1, by age, sex, and marital status for years 1978-2009, excluding 1980. These data are updated each year based on output of the HISTORICAL POPULATION subprocess.

Assumptions -

For each Trustees Report, ultimate values for the $\hat{A M} R^{z}$ are assumed. The $A \hat{M} R^{z}$ reaches its ultimate value in the 25th year of the 75 -year projection period. For the 2012 report, the intermediate ultimate $A \hat{M} R^{z}$ assumption is 4,000 per 100,000 unmarried couples.

NCHS Data -

- Number of new marriages in the MRA, by age-of-husband crossed with age-of-wife, for calendar years 1978 through 1988, excluding 1980. These data are no longer available for years after 1988. The data vary in detail by year. They are broken out by single year age-of-husband crossed with single year age-of-wife for many ages (particularly younger ages).
- Number of unmarried males and females in the MRA for calendar years 1978 through 1988, excluding 1980. These data are no longer available for years after 1988. The data are generally broken out by single year age for ages under 40 and by age groups 40-44,

45-49, 50-54, 55-59, 60-64, 65-74, and 75+.

- Number of new marriages, in a subset of the MRA, by age-group-of-husband crossed with age-group-of-wife (age groups include 15-19, 20-24, 25-29, 30-34, 35-44, 45-54, 55-64, and 65+), for calendar years 1989-1995. These data are updated as new data become available and internal resources are sufficient to examine and interpret such new data.
- The total number of new marriages in the MRA less marriages in those states not included in the MRA unmarried population for the period 1957-1988. These data are not updated.
- The total number of new marriages in the United States for the period 1989-2009. Normally, each year, the NCHS publishes the total number of marriages for one more year.
- Number of new marriages in the MRA for years 1979 and 1981-1988 by age group (age groups include 14-19, 20-24, 25-29, 30-34, 35-44, 45-54, 55-64, and 65+), sex, and prior marital status (single, widowed, and divorced). These data are no longer available for years after 1988.
- Number of unmarried people in the MRA for years 1979 and 1981-1988 by age group (age groups include 14-19, 20-24, 25-29, 30-34, 35-44, 45-54, 55-64, and 65+), sex, and prior marital status (single, widowed, and divorced). These data are no longer available for years after 1988.

Other Input Data -

- From state officials, number of same-sex marriages from 2004-2009. These data are updated as they become available.

1.6.c. Development of Output

Equation 1.6.1 -

Age-specific marriage rates are determined for a given age-of-husband crossed with age-of-wife, where ages range from 14 through 100+. The historical period includes years of complete NCHS data on the number of marriages and the unmarried population in the MRA for the period 1978 through 1988, excluding 1980. Data for a subset of the MRA, available by age group only, are used for the period 1989 through 1995 and total number of marriages is used for the period 1996 through 2009. The provisional period refers to years 1989 - 2009. The projection period of the MARRIAGE subprocess begins one year after the last historical data year (2010).

The historical age-specific marriage rates are calculated for each year in the historical period based on NCHS data of the number of new marriages by age-of-husband crossed with age-ofwife and the number of unmarried persons by age and sex. The formula used in the calculations is given below:

$$
\hat{m}_{x, y}^{z}=\frac{\hat{M}_{x, y}^{z}}{P_{x, y}^{z}} \text {, where }
$$

- $\quad x$ refers to the age of males and y refers to the age of females;
- $\quad \hat{M}_{x, y}^{z}$ is the number of marriages in year z; and
- $\quad\left(P_{x, y}^{z}\right)$ is the geometric mean of the midyear unmarried males and unmarried females in year z.

The rates for the period 1978 through 1988^{21} are then averaged, graduated, and loaded into an 87 by 87 matrix (age-of-husband crossed with age-of-wife for ages 14 through 100+), denoted as MarGrid. This matrix is used in the calculation of the age-specific marriage rates for all later provisional years and the years in the projection period.

For the first part of the provisional period, 1989-1995, the NCHS provided data on the number of marriages in a subset of the MRA by age-group-of-husband crossed with age-group-of-wife (age groups include 15-19, 20-24, 25-29, 30-34, 35-44, 45-54, 55-64, and 65+). These data are used to change the distribution of MarGrid by these age groups. For each age-group-of-husband crossed with age-group-of-wife, the more detailed marriage rates in MarGrid that are contained within this group are adjusted so that the number of marriages obtained by using the rates in MarGrid match the number implied by the MRA subset.

For each year of the entire provisional period (1989-2009), an expected total number of marriages is calculated by multiplying the rates in the MarGrid (or the adjusted MarGrid for years 1989-1995) by the corresponding geometric mean of the unmarried males and unmarried females in the Social Security area population. All rates in MarGrid (or the adjusted MarGrid for years 1989-1995) are then proportionally adjusted to correspond to the total number of marriages estimated in the year for the Social Security area population. This estimate is obtained by increasing the number of marriages reported in the U.S. to reflect the difference between the Social Security area population and the U.S. population. In addition, we also subtract out samesex marriages reported to NCHS as we do not project same-sex marriages. The provisional period age-specific rates are then graduated using the Whittaker-Henderson method and are used to calculate the age-adjusted rates for each year.

The age-adjusted marriage rates are expected to reach their ultimate value in the $25^{\text {th }}$ year of the 75 -year projection period. Rather than use the last year of provisional data to calculate the starting rate, the rates for the past five historical data years are averaged to derive the starting value. The annual rate of change in the age-adjusted marriage rate is calculated by taking the

[^15]$27^{\text {th }}$ root of the ratio of the ultimate value and the starting value. Thus, to calculate the rate for a projected year, the rate of change is applied to the prior year's rate (or the starting value for the first year of the projection period).

To obtain the age-of-husband-age-of-wife-specific rates for a particular year from the ageadjusted rate projected for that year, the age-of-husband-age-of-wife-specific rates in MarGrid are proportionally scaled so as to produce the age-adjusted rate for the particular year.

A complete projection of age-of-husband-age-of-wife-specific marriage rates was not done separately for each previous marital status. However, data indicate that the differential in marriage rates by prior marital status is significant. Thus, future relative differences in marriage rates by prior marital status are assumed to be the same as the average of those experienced during 1979 and 1981-1988.

1.7. DIVORCE

1.7.a. Overview

For the period 1979 through 1988, the National Center for Health Statistics (NCHS) collected data on the annual number of divorces in the Divorce Registration Area (DRA), by age-group-ofhusband crossed with age-group-of-wife. In 1988, the DRA consisted of 31 States and accounted for about 48 percent of all divorces in the U.S. These data are then inflated to represent an estimate of the total number of divorces in the Social Security area. This estimate for the Social Security area is based on the total number of divorces in the 50 States, the District of Columbia, Puerto Rico, and the Virgin Islands. Divorce rates for this period are calculated using this adjusted data on number of divorces and estimates of the married population by age and sex in the Social Security area.

An age-of-husband (x) crossed with age-of-wife (y) specific divorce rate ($\hat{d}_{x, y}^{z}$) for a given year z is defined as the ratio of (1) the number of divorces in the Social Security area for the given age of husband and wife ($\hat{D}_{x, y}^{z}$) to (2) the corresponding number of married couples in the Social Security area ($P_{x, y}^{z}$) with the given age of husband and wife. An age-adjusted central divorce rate ($A \hat{D} R_{x, y}^{z}$) summarizes the $\hat{d}_{x, y}^{z}$ for a given year.

The $A \hat{D} R^{z}$ is calculated by determining the expected number of divorces by applying:

- The age-of-husband crossed with age-of-wife specific divorce rates to
- The July 1, 1982, population of married couples in the Social Security area by corresponding age-of-husband and age-of-wife.

The expected number of divorces is then divided by the total number of married couples in that year.

The DIVORCE subprocess projects annual $\hat{d}_{x, y}^{z}$ by age-of-husband crossed with age-of-wife. The primary equations, 1.7.1 and 1.7.2, are given below:

$$
\begin{align*}
& \hat{d}_{x, y}^{z}=\hat{d}_{x, y}^{z}(\cdot) \tag{1.7.1}\\
& A \hat{D} R^{z}=\frac{\sum_{x, y} P_{x, y}^{S} * \hat{d}_{x, y}^{z}}{\sum_{x, y} P_{x, y}^{S}} \tag{1.7.2}
\end{align*}
$$

where x and y refer to the age of husband and age of wife, respectively, and $P_{x, y}^{S}$ is the number of married couples in the Social Security area population as of July 1, 1982.

1.7.b. Input Data

Long-Range OASDI Projection Data -

Demography

- Social Security area population of married couples by age-of-husband crossed with age-of-wife as of January 1 for years 1979-2009. These data are updated each year from the HISTORICAL POPULATION subprocess.
- The total population in the Social Security area for years 1979-2009. An additional year of data is added for each additional year of divorce data from the NCHS.

Assumptions -

Each year, the ultimate assumed value for the age-adjusted divorce rate is established. The rate reaches its ultimate value in the $25^{\text {th }}$ year of the 75 -year projection period. For the 2012 report, the ultimate assumed $A \hat{D} R^{z}$ is 2,000 per 100,000 married couples.

NCHS Data -

- The number of divorces in the DRA, by age-of-husband crossed with age-of-wife, for calendar years 1979 through 1988. These data are no longer available for years after 1988. The data are broken out by single year age-of-husband crossed with single year age-of-wife for many ages (particularly younger ages).
- The total number of divorces in the United States for years 1979-1988. No new data are available.
- The total number of divorces in the United States for the period for 1989-2009. Additional years of data are incorporated as they become available, which is generally every year.
- The total number of divorces in Puerto Rico and the Virgin Islands for years 1989-2009. The most recent year of data was obtained in 2000; the 2000 figures are used as a proxy for 2001-2009. ${ }^{22}$ New data are incorporated as they become available and resources are sufficient to validate their use.

[^16]
Other Input Data-

- From the U.S. Census Bureau, the total population in the U.S for years 1979-1988. No new data are needed.
- From the U.S. Census Bureau, the total population in the U.S., in Puerto Rico, and the Virgin Islands for years 1989-2009. The most recent year of data was obtained in 2000; the 2000 figures are used as a proxy for 2001-2009. ${ }^{23}$ New data are incorporated as they become available and resources are sufficient to validate their use.

1.7.c. Development of Output

Equation 1.7.1 -

Age-specific divorce rates are defined for ages 14 through 100+. Detailed NCHS data on the number of divorces by age-group-of-husband crossed with age-group-of-wife are available for the period 1979 through 1988. Provisional data on the total number of divorces in the United States are used for the period 1989 through 2009.

First, the detailed NCHS data on divorces by age group is disaggregated into single year of age of husband (x) and age of wife (y), for ages 14-100+, using the H.S. Beers method of interpolation. Then, the age-specific divorce rates ($\hat{d}_{x, y}^{z}$), for each year, z, are calculated for the period 1979-1988 by taking the number of divorces (inflated to represent the Social Security area, $D_{x, y}^{z}$) and dividing by the married population in the Social Security area at that age-ofhusband and age-of-wife ($P_{x, y}^{z}$). The formula for this calculation is given below:

$$
\begin{equation*}
\hat{d}_{x, y}^{z}=\frac{\hat{D}_{x, y}^{z}}{P_{x, y}^{z}} \tag{1.7.3}
\end{equation*}
$$

These rates are then averaged, graduated, ${ }^{24}$ and loaded into an 87 by 87 matrix (age-of-husband crossed with age-of-wife for ages 14 through 100+), denoted as DivGrid. DivGrid will be used in the calculation of the age-specific divorce rates for all later years including the projection period.

For each year in the provisional period (1989-2009), an expected number of total divorces in the Social Security area is obtained by applying the age-of-husband crossed with age-of-wife rates in DivGrid to the corresponding married population in the Social Security area. The rates in DivGrid are then proportionally adjusted so that they would yield an estimate of the total number

[^17]of divorces in the Social Security area. The estimate of total divorces is obtained by adjusting the reported number of divorces in the U.S. for (1) the differences between the total divorces in the U.S. and in the combined U.S., Puerto Rico, and Virgin Islands area, and (2) the difference between the population in the combined U.S., Puerto Rico, and Virgin Islands area and in the Social Security area.

The rates over the past five historical data years are averaged and used as the starting value and the age-adjusted divorce rate is calculated. The rate is assumed to reach its ultimate value in the $25^{\text {th }}$ year of the 75 -year projection period. The annual rate of change in the age-adjusted divorce rate is calculated by taking the $27^{\text {th }}$ root of the ratio of the ultimate value and the starting value. Thus, to calculate the age-adjusted rate for a projected year, the rate of change is applied to the prior year's rate (or to the starting value for the first year of the projection period).

To obtain age-specific rates for use in the projections, the age-of-husband-age-of-wife-specific rates in DivGrid are adjusted proportionally so as to produce the age-adjusted rate assumed for that particular year.

1.8. PROJECTED POPULATION

1.8.a. Overview

For the 2012 Trustees Report, the starting population for the population projections is the January 1, 2010, Social Security area population, by age, sex, and marital status, produced by the HISTORICAL POPULATION subprocess. (For this section, section 1.8, the term "starting year" refers to the year 2010.) The Social Security area population is then projected using a component method. The components of change include births, deaths, net legal immigration, and net other immigration. The components of change are applied to the starting population by age and sex to prepare an estimated population as of January 1, 2011, and to project the population through the 75 -year projection period (years 2012-86). There is a separate equation for each of the components of change as follows:

$$
\begin{equation*}
B_{s}^{z}=B_{s}^{z}(\cdot) \tag{1.8.1}
\end{equation*}
$$

where B_{s}^{z} is the number of births of each sex (s) born in year z ;

$$
\begin{equation*}
D_{x, s}^{z}=D_{x, s}^{z}(\cdot) \tag{1.8.2}
\end{equation*}
$$

where $D_{x, s}^{z}$ is the number of deaths at age (x) and sex (s) that occurs in year z;

$$
N L_{x, s}^{z}=L_{x, s}^{z}-E_{x, s}^{z}
$$

where $N L_{x, s}^{z}$ is describe in the LEGAL IMMIGRATION section, as equation 1.3.5; and

$$
\begin{equation*}
N O_{x, s}^{z}=N O_{x, s}^{z}(\cdot) \tag{1.8.3}
\end{equation*}
$$

where $N O_{x, s}^{z}$ is the number of net other immigrants, ${ }^{25}$ by age (x) and sex (s), for year z .

[^18]Once the components of change are calculated, the following equation is used to calculate the Social Security area population by age and sex:

$$
P_{x, s}^{z}= \begin{cases}B_{s}^{z-1}-D_{x-1, s}^{z-1} & \text { for age }=0 \tag{1.8.4}\\ P_{x-1, s}^{z-1}-D_{x-1, s}^{z-1}+N L_{x-1, s}^{z-1}+N O_{x-1, s}^{z-1} & \text { for ages }>0\end{cases}
$$

where $P_{x, s}^{z}$ is the population, by age (x) and sex (s), as of January $1^{\text {st }}$ of year z . Note that for age $0, D_{-1, s}^{z-1}$ represents neonatal deaths.

The population is further disaggregated into the following four marital statuses: single (never married), married, widowed, and divorced. The following equation shows the population by age (x), sex (s), and marital status (m) for each year z :

$$
\begin{equation*}
P_{x, s, m}^{z}=P_{x, s, m}^{z}(\cdot) \tag{1.8.5}
\end{equation*}
$$

The children (ages 0-18) population is further disaggregated into the following four parent statuses (i.e., fates): both parents survive, only father survives, only mother survives, and both parents deceased. The following equation shows the children population by age of child (x), sex of parent (s), age group of parent (g), and fate of parent (f) for each year z:

$$
\begin{equation*}
C_{x, s, g, f}^{z}=C_{x, s, g, f}^{z}(\cdot) \tag{1.8.6}
\end{equation*}
$$

In addition to projecting the total Social Security area population, this subprocess also projects the other immigrant population by age (x) and sex (s) using the following equation:

$$
\begin{equation*}
O P_{x, s}^{z}=O P_{x-1, s}^{z-1}+N O_{x-1, s}^{z-1}-D_{x-1, s}^{z-1} \tag{1.8.7}
\end{equation*}
$$

where, $O P_{x, s}^{z}$ is equal to the other immigrant population, by age (x) and sex (s) as of January $1^{\text {st }}$ of year z . $D_{x, s}^{z}$ are the number of deaths in the other immigrant population by age (x) and sex (s) for year z (see equation 1.8.2).

1.8.b. Input Data

Long-Range OASDI Projection Data -

Demography

FERTILITY

- Historical birth rates by single year of age of mother (14-49) for the years beginning with 1941 and ending with the year prior to the starting year. These data are updated each year.
- Projected birth rates by single year of age of mother (14-49) for the years beginning with the starting year and ending with 2101 . These data are updated each year.

MORTALITY

- Historical probabilities of death by age last birthday (including neonatal mortality factor, single year of age for ages $0-99$, and age group $100+$) and sex for years beginning with 1941 and ending with the year prior to the starting year. These data are updated each year.
- Projected probabilities of death by age last birthday (including neonatal mortality factor, single year of age for ages 0-99, and age group 100+) and sex for the years beginning with the starting year and ending with 2101 . These data are updated each year.
- Factors to distribute probabilities of death by marital status. They are dimensioned by sex, single year of age (ages 14-100+), and marital status. These data are updated each year.

LEGAL IMMIGRATION

- Projected numbers of legal immigrants who are new arrivals, by single year of age (0-84) and sex for years beginning with the starting year and ending with 2101. These data are updated each year.
- Projected numbers of legal immigrants who are adjustments of status, by single year of age $(0-84)$ and sex for years beginning with the starting year and ending with 2101. These data are updated each year.
- Projected numbers of legal emigrants by single year of age (0-84) and sex for years beginning with the starting year and ending with 2101. These data are updated each year.

HISTORICAL POPULATION

- Social Security area population by single year of age (0-99 and 100+), sex, and marital status for the years beginning with 1941 and ending with the year prior to the starting date. These data are updated each year.
- Married couples by single year of age of husband (ages 14-100+) crossed with single year of age of wife (ages 14-100+) for the years beginning with 1941 and ending with the year prior to the starting date. These data are updated each year.
- Other than legal population by age and sex for the years beginning with 1964 and ending with the year prior to the starting date. These data are updated each year.

OTHER IMMIGRATION

- Projected numbers of other immigrants by age (0-84) and sex for years beginning with the starting year and ending with 2101. These data are updated each year.
- Fixed departures by age and sex. These data are updated each year.
- Rates of emigration by age and sex. These data are updated each year.

MARRIAGE

- Projected central marriage rates by single year of age of husband (ages 14-100+) crossed with single year of age of wife (ages 14-100+) for each year of the projection period. These data are updated each year.
- Averaged and graduated marriage rates for the period 1979 and 1981-1988 by single year of age (ages 14-100+), sex, and prior marital status (single, divorced, and widowed). These data are updated each year.
- Total number of marriages for the years beginning with 1989 and ending two years prior to the starting date. These data are updated each year.

DIVORCE

- Projected central divorce rates by single year of age of husband (14-100+) crossed with single year of age of wife (14-100+) for each year of the projection period. These data are updated each year.

U.S. Census Bureau Data -

- CPS data on the average number of children per married couple with children by age group of householder (age groups 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, and 55-64) for 1960-2010. (Note that the program splits the last age group, which is a 10-year age group, into two 5-year age groups.) An additional year of data is added each year.

1.8.c. Development of Output

Equation 1.8.1-Births

The number of births in the Social Security area, B_{x}^{z}, is computed for each year, z , of the projection period by applying the age-specific birth rate to the midyear female population aged 14 to 49 as follows:

$$
B_{x}^{z}=b_{x}^{z}\left(\frac{F P_{x}^{z}+F P_{x}^{z+1}}{2}\right)
$$

where,
$B_{x}^{z}=$ number of births to mothers age x in year z;
$b_{x}^{z}=$ birth rate of mothers age x in year z; and
$F P_{x}^{z}=$ female population age x at the beginning of year z.
The total number of births in a given year is the sum of the number of births to mothers at each age. This total number of births is disaggregated by sex by assuming a gender ratio of 105 male births for every 100 female births.

Equation 1.8.2 - Deaths

The number of deaths for the Social Security area by age (x) and sex (s), $D_{x, s}^{z}$, is computed for each projection year by applying the death probabilities for each age and sex, $q_{x, s}^{z}$, to the exposed population at the beginning of the year.

$$
D_{x, s}^{z}=q_{x, s}^{z} P_{x, s}^{z}
$$

Deaths for the other immigrant population are calculated in the same manner using the same death probabilities.

$$
O D_{x, s}^{z}=q_{x, s}^{z} O P_{x, s}^{z}
$$

Equation 1.8.3 - Net Other Immigration

Net other immigration by age (x) and sex (s) for year z, $N O_{x, s}^{z}$, consists of other immigration less other emigration. Thus, we have the following equation:

$$
N O_{x, s}^{z}=O_{x, s}^{z}-O E_{x, s}^{z}
$$

Other immigration by age (x) and sex (s), $O_{x, s}^{z}$ is calculated in the OTHER IMMIGRATION subprocess (1.5) for each year z of the long-range projection period. Other emigration by age and sex, $O E_{x, s}^{z}$, consists of those who adjust status to legal permanent residents and departures from the Social Security area population. Therefore, other emigration can be expressed via the following equation:

$$
O E_{x, s}^{z}=A O S_{x, s}^{z}+O D_{x, s}^{z}
$$

where $A O S_{x, g}^{z}$ is the annual number of people who adjust status to legal permanent resident status, and $O D_{x, s}^{z}$ is discussed in the next paragraph. Adjustments of status are calculated in the LEGAL IMMIGRATION subprocess.
$O D_{x, s}^{z}$ is equal to the annual number of other immigrants who depart the Social Security area by age (x) and sex (s), as shown in the following equation:

$$
O D_{x, s}^{z}=F D_{x, s}^{z}+R D_{x, s}^{z}
$$

where $F D_{x, s}^{z}$ is the number of fixed departures (calculated in the OTHER IMMIGRATION subprocess) and $R D_{x, s}^{z}$ is the varying number of departures based on the rates of emigration. Modeling the $O D_{x, s}^{z}$ in this manner recognizes two key points of other emigration: (1) as the size of the exposed population increases the overall number of departures is likely to increase and (2) as the average duration of stay increases the overall gross departure rate is likely to decrease.
$R D_{x, s}^{z}$ is calculated by applying the rates of emigration, $r_{x, s}$, to the exposed population. The rates of emigration, which are calculated in the OTHER IMMIGRATION subprocess, do not vary by year. The exposed population is calculated by subtracting deaths, fixed departures, and adjustments of status from the beginning of year other immigrant population.

$$
R D_{x, s}^{z}=r_{x, s} *\left(O P_{x, s}^{z} *\left(1-q_{x, s}^{z}\right)-F D_{x, s}-A O S_{x, s}^{z}\right)
$$

Equation 1.8.5-Disaggregating the population by marital status

Once the population is projected by single year of age and sex, it is then disaggregated into the following four marital states; single, married, widowed, and divorced. Estimates of the Social Security area population by single year of age (0-99 and 100+), sex, and marital status as of the starting date of the population projection are obtained from the HISTORICAL POPULATION subprocess. In addition, the HISTORICAL POPULATION subprocess provides the number of
married couples by single year of age of husband crossed with single year of age of wife as of the starting date.

All births are assigned to the single category. For a given age and sex, deaths are assigned by marital status according to the relative differences in death rates by marital status observed for that age and sex during the calendar years 1995 and 1996, as determined in the MORTALITY subprocess. For a given age and sex, immigrants are assigned by marital status according to the beginning of year marital distribution of the Social Security area population for that age and sex.

Once the number of marriages, divorces, and widowings during a year are determined, the population by age, sex, and marital status is updated to represent end of year. The unmarried population at the end of the year is estimated from the population at the beginning of the year by subtracting deaths and marriages and adding new immigrants, widows (or widowers), and divorces during the year. The married population at the end of the year is estimated from the population at the beginning of the year by reducing the population for divorces, widows (or widowers), dissolutions of marriages when both husband and wife dies, and by increasing the population for new immigrants and marriages during the year.

Numbers of new marriages are determined for each projection year. The annual number of marriages occurring at each age of husband crossed with each age of wife is obtained by multiplying the age-of-husband and-age-of-wife-specific marriage rates with the geometric mean of the midyear unmarried male population and the midyear unmarried female population.

The age-specific midyear unmarried male population ${ }^{26}$ is estimated from the beginning of the year unmarried populations. It is calculated by adjusting the number of unmarried males at the beginning of the year to represent midyear using the relationship between the prior beginning of year and the current beginning of year unmarried male populations. The midyear female unmarried population is approximated similarly.

The numbers of marriages are then distributed by previous marital status (single, widowed, divorced) in the same proportions as would have been produced by applying the previous marital-status-specific marriage rates from the MARRIAGE subprocess to the population by marital status at the beginning of the year.

Numbers of new divorces are determined for each projection year. The number of divorces during a year, occurring at each age of husband crossed with each age of wife, is obtained by multiplying the age-of-husband by age-of-wife divorce rates for that year with the midyear number of married couples in that age crossing.

The number of age-of-husband by age-of-wife midyear married couples is estimated from the beginning of the year married couples. It is calculated by adjusting the number of married

[^19]couples at the beginning of the year to represent midyear using the relationship between the number of married couples at the beginning of the prior year and the beginning of the current year.

Widowings are computed by applying general population probabilities of death to the marriage prevalence at the beginning of the year. Widowings and deaths by marital status are then reconciled for internal consistency.

Equation 1.8.6 - Disaggregating the children by parent survival status

Once the population is projected by single year of age, sex, and marital status, the number of children are then categorized by age of father, age of mother, and orphan status. The HISTORICAL POPULATION subprocess provides the historical number of children (ages 018), number of women (ages 14-49), and the number of married couples by single year of age of husband crossed with single year of age of wife. The projected number of children (ages 0-18), number of women (ages 14-49), and marriage grid age of husband crossed with age of wife is calculated in the projected population.

For women aged 14-49, births are calculated by multiplying the age-specific birth rate, from the FERTILITY subprocess, with the average number of women at the corresponding age. The births are then distributed to the age of husband in the same proportions as the age of husband crossed with age of wife married couples grid.

Each year the number of children is then rolled forward a year to the next age of husband, age of wife, and child age. Parent survival is calculated based on the deaths rates from the MORTALITY subprocess. The number of orphans consists of children with at least one parent deceased. The calculated number of children by age of father and age of mother must match the number of children in the historical or projected population. To accomplish this, the calculated number of children is multiplied by the ratio of the number of children in the historical or projected population to the number of children by age of father and age of mother that was calculated using the fertility rates. For any remaining difference, an adjustment of one is made for each age of husband crossed with age of wife until the total number of children match.

Once the population is projected by single year of age, sex, marital status, and children, the mean number of children per married couple with children is determined by year and age of householder. The historical mean number of children by year and age of householder in the population program is calculated from the number of children categorized by age of father, age of mother, and the number of married men by age group from the HISTORICAL POPULATION subprocess. Linear regression is used to model the relationship between the mean number of children in the population program to the mean number of children from the U.S. Census Bureau. The regression model is then used to project the mean number of children by age of householder in the population program.

Process 2:
 Economics

2. Economic

The Office of the Chief Actuary uses the Economic process to project OASDI employment and earnings-related variables, such as the average wage for indexing and the effective taxable payroll. The Economic process receives input data from the Demography process and provides output data to the Beneficiaries and the Trust Fund Operations \& Actuarial Status processes.

The Economic Process is composed of four subprocesses, U.S. EMPLOYMENT, U.S. EARNINGS, COVERED EMPLOYMENT AND EARNINGS, and TAXABLE PAYROLL. As a rough overview, U.S. EMPLOYMENT and U.S. EARNINGS project U.S. employment and earnings data, respectively, while COVERED EMPLOYMENT AND EARNINGS converts these employment and earnings variables to OASDI covered concepts. TAXABLE PAYROLL, in turn, converts OASDI covered earnings to taxable concepts, which are eventually used to estimate future payroll tax income and future benefit payments.
U.S. EMPLOYMENT and U.S. EARNINGS produce quarterly output, while the output from COVERED EMPLOYMENT AND EARNINGS is annual. TAXABLE PAYROLL produces both.

Two appendices are at the end of this documentation. The first appendix, 2-1, provides details for most of the equations given in the following descriptions of the Economic process. The second appendix, 2-2, provides a listing with explanations of acronyms used in this documentation.

2.1. U.S. EMPLOYMENT (USEMP)

2.1.a. Overview

The Bureau of Labor Statistics (BLS) publishes historical monthly estimates for civilian U.S. employment-related concepts from the Current Population Survey (CPS). The principal measures include the civilian labor force (LC) and its two components - employment (E) and unemployment (U), along with the civilian non-institutional population (N). The BLS also publishes values for the civilian labor force participation rate (LFPR) and the civilian unemployment rate (RU). The LFPR is defined as the ratio of LC to N, while the RU is the ratio of U to LC, expressed to a base of 100 . For many of these concepts, the BLS publishes historical data disaggregated by age, gender, marital status, and presence of children.

For various disaggregated groups ${ }^{27}$, USEMP projects quarterly and annual values for these principal measures of U.S. employment and population. Equations 2.1.1 through 2.1.6 outline the subprocess' overall structure and solution sequence for the total economy. We assume that the military population (M) will remain constant over the first ten years of the projection horizon then grow at the same rate as E . We also assume that the sum of N and M will grow at the same annual rate projected for the Social Security area population (P) (see Demography Process input).

$$
\begin{array}{ll}
\mathrm{M}^{\mathrm{t}}= & \mathrm{M}^{2010} \quad \text { for } \mathrm{t} \leq 2020 \\
& \mathrm{M}^{\mathrm{t}-1} *\left(\mathrm{E}^{\mathrm{t}} / \mathrm{E}^{\mathrm{t}-1}\right) \text { for } \mathrm{t}>2020 \\
\mathrm{~N}^{\mathrm{t}}= & {\left[\left(\mathrm{N}^{\mathrm{t}-1}+\mathrm{M}^{\mathrm{t}-1}\right) *\left(\mathrm{P}^{\mathrm{t}} / \mathrm{P}^{\mathrm{t}-1}\right)\right]-\mathrm{M}^{\mathrm{t}}} \\
\mathrm{RU}= & R U(\cdot) \\
\mathrm{LFPR}= & \operatorname{LFPR}(\cdot) \\
\mathrm{LC} & =\operatorname{LFPR} * \mathrm{~N} \tag{2.1.6}\\
\mathrm{E} & =\operatorname{LC} *(1-\mathrm{RU} / 100)
\end{array}
$$

Note: the superscript t represents the projection year.
The Demography Process estimates historical values for the total Social Security area population (P) and an important component, the other immigrant population (OP). Similarly, USEMP projects annual values for E and employed OP (EO). USEMP further separates EO to those

[^20]whose earnings are reported and posted to the Master Earnings File (EO_MEF), those whose earnings are reported posted to the Earnings Suspense File (EO_ESF), those in the underground economy (EO_UND), and EO_MEF who are OASDI covered (EO_MEFC). Equations 2.1.7 through 2.1.11 outline the overall structure of the subprocess used to estimate EO and its sub-components.
\[

$$
\begin{array}{ll}
\mathrm{EO} & =\mathrm{E} * \mathrm{OP} / \mathrm{P} \\
\mathrm{EO} \text { MEF } & =E O_{-} \operatorname{MEF}(\cdot) \\
\mathrm{EO} \text { MEFC } & =E O_{-} \operatorname{MEFC}(\cdot) \\
\mathrm{EO} _\mathrm{ESF} & =E O_{-} E S F(\cdot) \\
\mathrm{EO} \mathrm{UND} & =E O_{-} U N D(\cdot) \tag{2.1.11}
\end{array}
$$
\]

Finally, for each age/gender group, USEMP projects total "at-any-time" employed other immigrant population (TEO). EO represents the average weekly employment of the other immigrant population during a calendar year. TEO represents the total number of individuals in the other immigrant population who had any employment during the calendar year. (EO can be roughly viewed as the average number of jobs worked by OP during a calendar year, while TEO represents the total number of individuals who worked those jobs.) Effectively, Equations 2.1.12 through 2.1.16 convert every EO age-gender sub-component to an at-any-time TEO age-gender sub-component counterpart.

$$
\begin{array}{ll}
\text { TEO } & =T E O(\cdot) \\
\text { TEO_MEF } & =T E O _M E F(\cdot) \\
\text { TEO_MEFC } & =T E O _M E F C(\cdot) \\
\text { TEO_ESF } & =T E O _E S F(\cdot) \\
\text { TEO_UND } & =T E O _U N D(\cdot) \tag{2.1.16}
\end{array}
$$

2.1.b. Input Data

Long-Range OASDI Projection Data
These data are updated each year.

Demography

- Social Security area population as of year-end (1941 - 2099) by age, marital status (single, married, widowed, divorced) and gender (M, F)
- "Other immigrant" population as of year-end (1980 - 2099) by age, marital status (single, married, widowed, divorced) and gender (M, F)
- Number of children by age of child and age of mother (1960-2099)
- Life expectancy by age and gender (1950-2099)
- Exit rates (probability of leaving the "other immigrant" population by other than death) by age and gender.
- Mortality rates by age and gender (1941-2099)

Trust Fund Operations and Actuarial Status - The Trust Fund Operations and Actuarial Status Process provides no input to the Economic Process sections. However, the LFPRs use input from the Outgo Process from the prior year's Trustees Report. That is, the projected LFPRs for the 2011 Trustees Report use input from the 2010 Trustees Report that includes projections for the disability prevalence rates by age and gender (originally from the Beneficiaries subprocess), and the primary insurance amount (PIA) replacement rates by age and gender. The disability prevalence rate is defined as the ratio of the number of disabled worker beneficiaries to the disability-insured population. The PIA replacement rate is defined as the ratio of a hypothetical medium-scaled worker's PIA to his/her career-average indexed earnings level.

Trustees Assumptions

Each year the Board of Trustees of the OASDI Trust Funds sets the ultimate assumed values for key economic variables:

- Real wage differential
- Annual percentage change in total economy productivity
- Annual percentage change in average hours worked
- Ratio of wages to compensation (RWSD)
- Ratio of compensation to GDP (RWSSY)
- Annual percentage change in the price differential
- Annual percentage change in CPI
- Annual trust fund real interest rate
- Unemployment rate

These ultimate values are generally implemented during the last half of the short-range (first 10 years) of the projection horizon. Earlier projected values are set to provide a smooth transition from the latest actual historical values to the assumed long-range ultimate ones. As a by-product of this process, values for the GDP deflator (PGDP), real GDP, and potential

GDP are set. The ratio (RTP) of real to potential GDP is an important summary measure of the business cycle.

It is important to note that the Trustees also agree on the assumed short-range values for the above variables.

Addfactors

Addfactors are adjustments that move an estimate closer to an expected value. They may be used for a variety of reasons associated with data availability, structural changes in the data and/or model, and perceived temporary aberrations in recent historical data. Addfactors were included on male and female LFPRs starting around age 40 and over to reflect projected changes in life expectancy and hypothetical disability prevalence rates for those at the NRA through age 72.

Addfactors are reviewed each year and implemented if necessary.

Other input data

- U.S. armed forces (EDMIL) by age and gender, estimated by the Department of Defense and published by the Census Bureau on a monthly basis (1948-2000) by single year of age (17 to 64) and gender. These data are no longer produced by Census.
- EDMIL by age and gender, estimated by the Economic Process as the difference in monthly resident plus Armed Forces overseas population and the monthly civilian population. These two populations are available from the Census Bureau on a monthly basis (April 2000 to October 2008) by single year of age (16 to 69) and gender. These data are updated several times a year.
- Data for the mobilized military reservist population, by branch of service (September 2001-October 2010) are reported by the US Department of Defense weekly. This subprocess updates the data several times a year.
- Data from the March Supplement of the Joint BLS/Census Current Population Survey (CPS) by year (1968-2008), for levels of the civilian noninstitutional population, labor force, military, and unemployment. These data are available from the U.S. Census Bureau, via Data Ferrett, by single year of age (16 to 85+), gender, marital status (never married, married with a spouse present, and married with no spouse present), and presence of children. These data are updated by the U.S. Census Bureau for the BLS annually. This subprocess updates the data every other year (or more often, based on time availability).
- Data from the March Supplement of the CPS by year (1992-2008), for levels of the civilian noninstitutional population. These data are available from the U.S. Census Bureau, via Data Ferrett, by single year of age (16 to $85+$), gender, and educational attainment level. These
data are updated by the U.S. Census Bureau for the BLS annually. This subprocess updates the data every year, if time availability allows.
- Data from the CPS (1948-2008) for levels of civilian employment, civilian labor force, civilian unemployment, and civilian noninstitutional population. These data are available from the BLS by age group and gender. These data are updated by the BLS monthly. This subprocess updates the data several times a year.
- Data from the CPS by year (1994-2008), for the civilian noninstitutional population. These data are available from the BLS by single year of age (16 to 85+), gender, marital status, labor force employment status, and (for those not in the labor force) reason for not being in the labor force. These data are updated by the BLS monthly. Monthly data are used to calculate annual averages. This subprocess updates the data every year, if time availability allows.
- Data from the Current Employment Statistics survey (CES) (1964 (varies) to 2008) for establishment employment, average hourly earnings, average weekly earnings, and average weekly hours. These data are available from the BLS by sector. These data are updated by the BLS monthly. This subprocess updates the data several times a year.
- Unpublished data from the CPS (1965 - October 2010) for male and female civilian labor force participation rates for older workers. These data are available from the BLS by single year of age (ages 55-79) and by group (75 and over, and 80 and over). These data are updated by the BLS monthly. This subprocess updates the data several times a year.
- The historical resident population is published annually by the Census (1980-2010). These data are available by gender and age group. This subprocess uses data for age groups under 16 and 60 and over. This subprocess updates the data annually.

2.1.c. Development of Output

Equation 2.1.3-Unemployment Rate (RU)

The RU is disaggregated by age and gender. The age groups include 16-17, 18-19, 20-24, 25-$29,30-34,35-39,40-44,45-49,50-54,55-59,60-64,65-69,70-74$, and 75 and over. Thus, USEMP contains 28 RU equations, 14 for males and 14 for females. Each disaggregated RU is specified using a first-difference model and is only dependent on one input, the distributed lag in the change in the ratio of real to potential GDP (RTP). Coefficients are estimated by regression and constrained to an expected aggregate behavior whereby a 2.0 percentage point increase in the RTP elicits a 1.0 percentage point decrease in the RU. Furthermore, projections are constrained to the ultimate age-gender-adjusted RU set by the Trustees. The aggregate RU is dependent on the projected distribution of the labor force by age and gender. See Appendix 2-1 for details on the equations.

Equation 2.1.4 - Labor Force Participation Rate (LFPR)

The LFPR is disaggregated by age and gender. Age groups include 16 to 17 (i.e., 16-17), 18-$19,20-24,25-29,30-34,35-39,40-44,45-49,50-54,55,56, \ldots .99,100$ and over. For age groups between 20 and 54, male and female LFPRs are further disaggregated by marital status, categories of which include never married, married with spouse present, and married with spouse absent (which includes separated, widowed, and divorced). Female LFPRs disaggregated by age (between 20 and 44) and by marital status are further disaggregated by presence of own child. The groups for presence of own child include females with at least one child under the age of six and females without a child under the age of six. Thus, USEMP contains 153 LFPR equations, 69 for males and 84 for females. See Appendix 2-1 for details on the equations.

Given the level of demographic disaggregation, the aggregate LFPR is dependent on the projected distribution of the population by age, gender, marital status, and presence of own child. Each disaggregated LFPR, however, is dependent on the input variables that are most relevant to the demographic group. For example, only the LFPRs for relevant older workers are dependent on changes to the normal retirement age (NRA). Specific examples of the impact of input data on the disaggregated LFPRs are presented below.

- Disability prevalence ratio (RD) is defined as the ratio of disabled worker beneficiaries to the disability-insured population. An increase in RD lowers the LFPR. The RD affects the LFPRs for males and females below the NRA. The RD is adjusted for the number of weeks worked per year, and for the difference between the number of disability beneficiaries and the number of people self-reporting disability in the Current Population Survey.
- Hypothetical disability prevalence ratios (HRD) are constructed by gender and single-year-of-age for those at the NRA and up to age 72. The HRD are estimates of what the RD would be if there were no NRA, or the NRA were much higher (age 73 or above), or there
were no conversion of disability to retirement benefits at NRA. The projected HRD values for a particular age-gender cohort are based on actual RD values for the cohort at an earlier age. They also assume that there is a natural tendency for the RD values to increase with age, as is observed for ages below the NRA. An increase in the HRD lowers the LFPR. However, the degree to which increasing HRDs lower the LFPR is assumed to decrease with age, reflecting the belief that, as people age, their tendency to retire and leave the labor force increases regardless of disability. Thus, weights applied to HRDs to compute their effect on LFPRs vary with age. The weights are 1.0 for males and females age $67,0.9$ for those age $68,0.7$ for $69,0.5$ for $70,0.3$ for 71 , and 0.1 for those age 72 . For example, we only take 50 percent of the estimated effect of an increase in the HRD on the LFPRs of males and females age 70.
- The unemployment rate (RU) is a measure of the business cycle. An increase in the lagged and current unemployment rate leads to a decrease in the LFPR. The RU affects most LFPRs.
- The normal retirement age (NRA) is assumed to affect the LFPRs for those age 62 through 69 through an earnings test and replacement rate. The replacement rate is defined as the ratio of a hypothetical worker's PIA to career-average wage level. This value is projected for hypothetical workers with medium-scaled earnings patterns ${ }^{28}$ who retire at ages 62 through 69. The replacement rate is adjusted to include the reduction for early retirement and the delayed retirement credit. An increase in the NRA decreases the adjusted replacement rates, which, in turn, leads to increases in the LFPRs for those between the ages of 62 and 69. The potential earnings test tax rate (POT_ET_TXRT) is used in LFPRs between 62 and 69. It is defined as a tax rate on monthly retirement benefits faced by an individual who opts to collect Social Security benefits before reaching NRA while continuing to work and earn income. An increase in the NRA from 66 to 67 leads to an increase in the potential tax rate for those age 66, which, in turn, leads to a decrease in their LFPR.
- The education distribution of the workforce increases the LFPRs if the level of educational attainment increases.
- The index of females with children is approximately equal to the ratio of the number of children under age 6 to mothers age 20 to 44 . For females aged 20 to 44 with at least one own child, an increase in the index lowers the LFPR.
- A LFPR increases with its lagged cohort. Lagged cohort variables affect female LFPRs age 55 and over, and male LFPRs age 75 and over.
- The LFPRs for males age 62 through 74 increase with spousal LFPRs.
- For those approximately age 40 and over, an increase in life expectancy leads to an increase in LFPRs .

Equation 2.1.7 to 2.1.16 - Employed Other Immigrant Population (EO) and At-Any-Time Employed Other Immigrant Population (TEO)

[^21]EO is estimated by gender and single-year of age from 16 to 100 . Thus, this portion of USEMP contains 170 equations, 85 for males and 85 for females. We separate each age-gender EO into visa-status components including those authorized to work, those not authorized to work but previously authorized, and those never authorized to work. We separate EO who were never authorized to work into those who worked in 2001 and earlier and those who began working in 2002 and later, since we believe that those who worked in 2001 and earlier are more likely to have OASDI covered wages. Each of these groups is then further separated into EO_MEF, EO_MEFC, EO_ESF, and EO_UND.

Every age-gender EO sub-component is converted to its age-gender TEO sub-component counterpart using an age-gender "conversion weight." For example, if the sub-component of EO is for males age 20 to 24, the conversion weight is defined as the ratio of total economy-wide at-any-time employed males age 20 to 24 (TEM2024) to the sum of military and CPS civilian male employment age 20 to 24. However, TEM2024 is by definition the sum of at-any-time employment posted and not posted to the MEF, of which, the latter group includes the portion of TEO who are male age 20 to 24 in the underground economy. Thus, we must use proxies for the conversion weights. For males age 20 to 24, our proxy conversion rate is defined as the ratio of the sum of OASDI covered employment posted to the MEF, EO_ESF, and EO_UND to the sum of military and CPS civilian employment. Effectively, this method assumes that the conversion weight for each age-gender sub-component of EO is approximately equal to the conversion rate for each age-gender sub-component of E .

2.2. U.S. EARNINGS (USEAR)

2.2.a. Overview

In the CPS data, E is separated by class of worker. The broad categories include wage and salary workers (EW), the self-employed (ES), and unpaid family workers (EU). For the nonagricultural sector, a self-employed participation rate (SEPR) is defined as the ratio of ES to E, the proportion of employed persons who are self-employed. For the agricultural sector, the SEPR is defined as the ratio of ES to the civilian noninstitutional population.

USEAR projects quarterly values for these principal classes of employment. Equations 2.2.1 through 2.2.4 outline the subprocess' overall structure and solution sequence.

$$
\begin{array}{ll}
\mathrm{SEPR} & =\operatorname{SEPR}(\cdot) \\
\mathrm{ES} & =\mathrm{SEPR} * \mathrm{E} \\
\mathrm{EU} & =E U(\cdot) \\
\mathrm{EW} & =\mathrm{E}-\mathrm{ES}-\mathrm{EU} \tag{2.2.4}
\end{array}
$$

In the National Income and Product Accounts (NIPA), the Bureau of Economic Analysis (BEA) publishes historical quarterly estimates for gross domestic product (GDP), real GDP, and the GDP price deflator (PGDP). PGDP is equal to the ratio of nominal to real GDP. Potential (or full-employment) GDP is a related concept defined as the level of real GDP that is consistent with a full-employment aggregate RU.

USEAR projects quarterly values for these output measures. Potential GDP is based on the change in full-employment values for: (1) E (including U.S. armed forces), (2) average hours worked per week, and (3) productivity. Full-employment values for E are derived by solving USEMP under full-employment conditions, while the full-employment values for the other variables (average hours worked and productivity) are set by assumption. Projected real GDP is set equal to the product of potential GDP and RTP. RTP reaches 1.0 in the short-range period and remains at 1.0 thereafter. Nominal GDP is the product of real GDP and PGDP. The growth rate in PGDP is set by assumptions.

The BEA also publishes quarterly values for the principal components of U.S. earnings, including total wage worker compensation (WSS), total wage and salary disbursements (WSD), and total proprietor income (Y). These concepts can be aggregated and rearranged. Total compensation (WSSY) is defined as the sum of WSS and Y. The total compensation ratio
(RWSSY) is defined as the ratio of WSSY to the GDP. The income ratio (RY) is defined as the ratio of Y to WSSY. The earnings ratio (RWSD) is defined as the ratio of WSD to WSS.

USEAR projects quarterly values for these principle components of U.S. earnings using Equations 2.2.5 through 2.2.11.

$$
\begin{array}{ll}
\mathrm{RWSSY} & =R W S S Y(\cdot) \\
\mathrm{WSSY} & =\mathrm{RWSSY} * \mathrm{GDP} \\
\mathrm{RY} & =R Y(\cdot) \\
\mathrm{Y} & =\mathrm{RY} * \mathrm{WSSY} \\
\mathrm{WSS} & =\mathrm{WSSY}-\mathrm{Y} \\
\mathrm{RWSD} & =R W S D(\cdot) \\
\mathrm{WSD} & =\mathrm{RWSD} * \mathrm{WSS} \tag{2.2.11}
\end{array}
$$

2.2.b. Input Data

Long-Range OASDI Projection Data
Demography- (See Section 2.1.b.)
Economics - Data from Section 2.1 include the total employed (E), E by age and gender, LFPRs by age and gender, the aggregate unemployment rate (RU), and the full-employment concepts for LC, RU, and E.

Trustees Assumptions - (See Section 2.1.b.)

Addfactors

Addfactors were included on some employment and output variables to smooth the transition between the latest historical data and the projected values. The need for addfactors is reviewed each year and they are implemented if necessary.

Other input data

- Data from the NIPA (1929 (varies) to 2007) for GDP, income, wages, compensation, personal consumption expenditures, investment, employer contributions for employee pension and insurance funds, and employer contributions for government social insurance. They are published by the BEA quarterly and/or annually. This subprocess updates the data several times a year.
- Ratio of OASDI covered to NIPA wages, and ratio of OASDI taxable to covered wages. NIPA wages by sector are available quarterly and annually from 1947 to 2005. They are published by the BEA and updated several times during the year. OASDI covered and taxable wages (1971 to 2004) are updated annually by the Economic process. Covered and taxable data for more recent historical years are estimated from preliminary tabulations of Form 941 and W-2 data. Projected values for covered ratios are set to the latest historical year.
- OASDI employee, employer, and self-employed tax rates from 1937 to 2080. These contribution rates are set according to the Social Security Act of 1935 as amended through 2005. The rates are updated when legislation mandates a change.
- The October ratio of the number of teenagers enrolled in school to the civilian noninstitutional population by gender and age group (16-17 and 18-19) for the period 1947 to 2006. An additional new year of data from the Census Bureau is usually available for including in preparation of the next annual Trustees Report. Projected values are set to levels from the latest historical year.
- The historical Consumer Price Index (CPI) is published monthly by the BLS. This subprocess updates the data several times a year.
- The historical CPI for medical services is published monthly by the BLS. Quarterly values are projected based on the projected growth in the aggregate CPI and an additional amount defined as the growth rate differential in the two price measures that was assumed in the latest President's Fiscal Year Budget. The series is updated annually.
- U.S. armed forces (EDMIL) by age and gender were estimated by the Department of Defense and published by the Census Bureau on a monthly basis (1948-2000) by single year of age (17 to 64) and gender. These data are no longer produced by Census.
- EDMIL by age and gender are estimated by the Economic process as the difference in the monthly resident plus Armed Forces overseas population and the monthly civilian population. These two populations are available from the Census Bureau on a monthly basis (April 2000 to October 2008) by single year of age (16 to 69) and gender. These data are updated several times a year.
- Wages for railroad workers are wages covered by the Railroad Retirement Act. The annual data are for the period 1971 to 2006. An additional year of data from the Railroad Retirement Board is usually available for including in preparation of the next annual Trustees Report.
- Unpublished data from the CPS (1988-2007) on employment by class of worker (i.e., agricultural, non-agricultural, unpaid family, private industry, government, wage and salary, self-employed). These data are available from the BLS by age group and gender. These data are updated by the BLS annually. This subprocess updates the data annually.
- Data from the NIPA (1947-2008) for wages and compensation of households and institutions are published by the BEA quarterly. This subprocess updates the data several times a year.
- Other program-related parameters, including the average indexing wage, the benefit increase, the taxable maximum, and the annual retirement earnings test exempt amounts, are obtained annually from the Short-Range section of OCACT. This subprocess updates the data annually.
- Ratios of OASDI covered wages to NIPA wages are used from the prior year's Trustees Report as input to the current year's calculations, for the following sectors: Federal civilian, Federal military, state and local, and private industry.
- Recent historical values (2000-2010) for quarterly real potential GDP are obtained from the Congressional Budget Office. This subprocess updates the data annually and adjusts the series to create a series usable for the current Trustees Report.
- Unpublished data from the CES \& CPS for total hours worked in the economy. These data are available from the BLS. These data are updated by the BLS quarterly (1948-2008) and annually (1948-2007). This subprocess updates the data several times a year.
- The Federal minimum hourly wage is based on the Fair Labor Standards Act from the Department of Labor for 1938 to 2007. The wage is updated when there is legislation mandating a change.
- Time trends (set by Economic process) are used in the agriculture sector for employment, real output, and compensation in the short-range period. These short-range trends are extended for each year's Trustees Report, reflecting a new short-range period.

2.2.c. Development of Output

Equation 2.2.1-Self-Employed Participation Rate (SEPR)

The SEPR is disaggregated by age, gender, and industry. The age groups include 16-17, 18-$19,20-24,25-34,35-44,45-54,55-64$, and 65 and over. The industry groups include agriculture and non-agriculture.

For the non-agriculture sector, the SEPRs by age and gender are defined as the ratio of the non-agriculture self-employment to total employment. Thus, the aggregate non-agriculture SEPR is dependent on the projected distribution of employment by age and gender. All nonagriculture SEPRs by age and gender are dependent on the RTP. Increases in the RTP lead to decreases in the SEPRs. For female age groups between 20 and 64, the non-agriculture SEPRs are also dependent on the groups LFPRs. Increases in the LFPRs lead to increases in the SEPRs.

For the agriculture sector, the male SEPRs by age are defined as the ratio of agriculture selfemployment to the civilian noninstitutional population. Thus, the aggregate agriculture SEPR for males is dependent on the projected distribution of the population by age. The agriculture SEPRs for males by age are dependent on the ratio of total agriculture employment (EA) to the total civilian population aged 16 and over. (EA is projected in a farm sub-program. Real farm output is projected to increase with the population, while farm productivity, defined as output per worker, is projected to continue to follow its historical trend. EA is projected as the ratio of farm output to farm productivity.) An increase in the ratio of EA to the total civilian population aged 16 and over leads to an increase in the agriculture SEPRs for males.

The female SEPRs by age for the agriculture sector are defined as the ratio of the female to male agriculture self-employment. Thus, the aggregate agriculture SEPR for females is dependent on the projected distribution of male agriculture employment by age. For female age groups between 18 and 64, the SEPRs are dependent on the RTP and the corresponding ratio of total female to male employment. Generally, an increase in the RTP leads to increases in the SEPRs. An increase in the total employment ratio also leads to an increase in the SEPR.

Equation 2.2.3 - Unpaid Family Workers (EU)

EU is disaggregated by age, gender, and industry. The age groups include 16-17, 18-19, 20-$24,25-34,35-44,45-54,55-64$, and 65 and over. The industry groups include agriculture and non-agriculture.

From 1970 to 2005, the level of EU fell from about 0.5 to 0.03 million in the agriculture sector and from about 0.5 to 0.09 million in the nonagriculture sector. For projections, the levels of EU by age and gender in the agriculture sector are assumed constant and about five
thousand or less. The EUs by age and gender in the nonagriculture sector are projected as a constant ratio to ES.

Equation 2.2.5-Total Compensation Ratio (RWSSY)

The Trustees set the ultimate annual growth rate for RWSSY. For the short-range period, total WSS, WSD, and Y are aggregated from sector components. Total GDP, WSS, and WSD are divided into the farm and nonfarm sectors. The nonfarm sector is further separated into the government and government enterprises, households, non-profit institutions, and residual (private nonfarm business excluding government enterprises (PBNFXGE)) sectors. Total Y is divided into the farm and residual (i.e., PBNFXGE) sectors.

The methodology used to estimate GDP, WSS, WSD, and Y differs by sector.
Farm - Nominal GDP is the product of real GDP and the farm price deflator. Real farm GDP is projected from estimates of real farm per capita output. EA is projected from estimates of farm productivity. EAW is projected to continue its historical increase relative to EA. Farm compensation (WSSPF) is the product of estimates for average farm compensation (AWSSPF) and EAW, while farm proprietor income (YF) is the product of estimates of average farm proprietor income (AYF) and EAS. AYF is projected based, in part, on the growth in average compensation in the private sector.

Government and Government Enterprises - This sector is further disaggregated to Federal Civilian, Federal Military, and State and Local. In each sector, WSD is the product of estimates for average wages and employment. WSS is the sum of WSD and estimates for non-wage components of compensation. GDP is the sum of WSS and estimates of consumption of fixed capital.

Household - WSS is the product of estimates for average compensation and employment. WSD is WSS less employer contributions for the OASDHI tax. GDP is the sum of WSS and the gross value added of owner-occupied housing.

Nonprofit Institutions - The Nonprofit Institutions sector is further disaggregated to Health, Education, and Social Services sectors. In each sector, WSS is the product of estimates for average compensation and employment. WSD is WSS less the estimates for non-wage components of compensation. GDP is WSS plus a residual component of output.

Private Nonfarm Business Excluding Government Enterprises (PBNFXGE) - GDP in the PBNFXGE sector is total economy-wide GDP less the sum of the other sector GDPs. WSS is projected as a ratio to GDP less Y. The ratio is projected to be mostly stable, varying only temporarily with changes in RTP. Y is projected as a ratio to GDP.

Thus, total labor compensation (WSSY) is summed from sector components, while the total compensation ratio (RWSSY) is the ratio of total WSSY to total GDP. It is important to note
that the pure program-generated estimate for the total RWSSY is adjusted to ensure a smooth transition between the latest historical data and the Trustees' ultimate assumptions.

Equation 2.2.7 - Income Ratio (RY)

Y is disaggregated to the farm and PBNFXGE sectors. In the PBNFXGE sector, the Y is projected as a ratio to GDP in the sector. In the farm sector, Y is projected based in part on the growth in average compensation in the private sector.

Equation 2.2.10-Earnings Ratio (RWSD)

In the NIPA, the difference between WSS and WSD is defined as employer contributions for employee pension and insurance funds (OLI) and employer contributions for government social insurance (SOC). OLI is mostly health and life insurance, and pension and profit sharing. SOC is composed of employer contributions to Federal and State \& Local government social insurance funds. Federal government funds include OASDI, HI, UI, and other small groups. State and Local government funds mostly include workers' compensation.

RWSD is defined as the ratio of WSD to WSS. RWSD is projected to mostly decline on a year-by-year basis over the entire 75-year projection horizon due to projected increases in employer contributions to employee group health insurance premiums (ECEGHIP) and pensions. ECEGHIP is projected by the Center for Medicare and Medicaid Services (CMS) and is consistent with new health care legislation enacted in 2010. Employer contributions to employee pension funds are assumed to increase as life expectancy increases.

2.3. OASDI COVERED EMPLOYMENT AND EARNINGS (COV)

2.3.a. Overview

Total at-any-time employment (TE) is defined as the sum of total OASDI covered employment (TCE) and total noncovered employment (NCE). TCE can be decomposed to workers who only report OASDI covered self-employed earnings (SEO) and to wage and salary workers who report some OASDI covered wages (WSW). Combination workers (CMB_TOT) are those who have both OASDI covered wages and self-employed income. Workers with some selfemployment income (CSW) are the sum of SEO and CMB_TOT.

Some of these concepts can be rearranged. The total employed ratio (RTE) is defined as the ratio of TE to the sum of EW, ES, and EDMIL, while the combination employment ratio (RCMB) is defined as the ratio of CMB_TOT to WSW.

COV projects annual values for TE and the principle measures of OASDI covered employment. Equations 2.3.1 through 2.3.9 outline the overall structure and solution sequence used to project these concepts.

$$
\begin{array}{ll}
\mathrm{RTE} & =R T E(\cdot) \\
\mathrm{TE} & =\operatorname{RTE} *(\mathrm{EW}+\mathrm{ES}+\mathrm{EDMIL}) \\
\mathrm{NCE} & =N C E(\cdot) \\
\mathrm{TCE} & =\mathrm{TE}-\mathrm{NCE} \\
\mathrm{SEO} & =S E O(\cdot) \\
\mathrm{WSW} & =\mathrm{TCE}-\mathrm{SEO} \\
\mathrm{RCMB} & =R C M B(\cdot) \\
\mathrm{CMB} _\mathrm{TOT} & =\mathrm{RCMB} * \mathrm{WSW} \\
\mathrm{CSW} & =\mathrm{SEO}+\mathrm{CMB} _\mathrm{TOT} \tag{2.3.9}
\end{array}
$$

Total OASDI covered earnings is defined as the sum of OASDI covered wages (WSC) and total covered self-employed income (CSE_TOT). Both components can be expressed as ratios to their U.S. earnings counterparts. The covered wage ratio (RWSC) is defined as the ratio of WSC to WSD, while the covered self-employed ratio (RCSE) is the ratio of CSE_TOT to Y.

COV projects annual values for the principal measures of OASDI covered earnings using Equations 2.3.10 through 2.3.13.

$$
\begin{array}{ll}
\text { RWSC } & =R W S C(\cdot) \\
\text { WSC } & =\operatorname{RWSC} * \mathrm{WSD} \\
\text { RCSE } & =R C S E(\cdot) \\
\text { CSE_TOT } & =\operatorname{RCSE} * \mathrm{Y} \tag{2.3.13}
\end{array}
$$

COV projects various annual measures of average OASDI covered earnings, including the average covered wage (ACW), average covered self-employed income (ACSE), and average covered earnings (ACE).

$$
\begin{equation*}
\mathrm{ACW}=\mathrm{WSC} / \mathrm{WSW} \tag{2.3.14}
\end{equation*}
$$

ACSE $=$ CSE_TOT / CSW

$$
\begin{equation*}
\text { ACE } \quad=\left(\mathrm{WSC}+\mathrm{CSE} _T O T\right) / \text { TCE } \tag{2.3.15}
\end{equation*}
$$

The average wage index (AWI) is based on the average wage of all workers with wages from Forms W-2 posted to the Master Earnings File (MEF). By law, it is used to set the OASDI contribution and benefit base (TAXMAX).

COV projects annual values for the AWI and TAXMAX.

$$
\begin{array}{ll}
\text { AWI } & =A W I(\cdot) \\
\text { TAXMAX } & =\operatorname{TAXMAX}(\cdot) \tag{2.3.18}
\end{array}
$$

2.3.b. Input Data

Long-Range OASDI Projection Data
Demography - (See Section 2.1.b.)

Economics- Employment and earnings-related data from Sections 1.1 and 1.2.

Trustees Assumptions - (See Section 2.1.b.)

Addfactors

Addfactors were included on some employment variables to smooth the transition from the latest historical data to program estimates. The need for addfactors is reviewed each year and they are implemented if necessary.

Other input data

- The ratio of maximum quarterly population within a year to the annual value for that year is calculated from 1959 through the year of latest available data by 5-year age group and gender. The population, defined as the sum of the civilian noninstitutional population and the military is updated quarterly from CPS and military data.
- Ratios of OASDI covered to NIPA wages by sector. NIPA wages by sector are available quarterly and annually from 1947 to 2008. They are published by the BEA and updated several times during the year. OASDI covered wages (1971 to 2005) are updated annually by the Economic process. Covered data for the latest historical year are estimated from tabulations of Form 941 and W-2 data.
- Ratio of disabled worker beneficiaries to the Social Security area population is produced by 5-year age group and gender for the years 1970 to 2099. The Social Security area population is produced by the Demography process and updated annually for the Trustees Report. The number of disabled worker beneficiaries are annual data from the prior year's Trustees Report (Disability subprocess), and are updated annually.
- U.S. armed forces (EDMIL) by age and gender were estimated by the Department of Defense and published by the Census Bureau on a monthly basis (1948-2000) by single year of age (17 to 64) and gender. These data are no longer produced by Census.
- EDMIL by age and gender are estimated by the Economic process as the difference in the monthly resident plus Armed Forces overseas population and the monthly civilian population. These two populations are available from the Census Bureau on a monthly basis (April 2000 to October 2008) by single year of age (16 to 69) and gender. These data are updated several times a year.
- Railroad employment is covered by the Railroad Retirement Act. The annual historical data are for the period 1971 to 2008. An additional new year of historical data from the Railroad Retirement Board is usually available for inclusion in preparation of the next annual Trustees Report.
- Data obtained from Office of Research, Evaluation, and Statistics (ORES) are tabulations of quarterly Form 941 data. Data currently used are the OASDI, HI, and income taxable wages by sector for the most recent five years. The data represent changes in reported wages since the prior quarterly report. The most recent data are appended to previously reported data. Annual totals are computed and used to derive estimates of OASDI covered wages by sector for the latest historical years.
- Data obtained from the most recently available 1.0% CWHS active file, maintained on Social Security's mainframe and made available by ORES. The years of data are 1951 to the third year prior to the current Trustees Report year. The data are used for comparison of OASDI covered earnings from other sources.
- Data obtained from extracting information from the 1.0\% Employee-Employer Files, maintained on Social Security's mainframe and made available by ORES. Each year two files are created: a Version 1 file for the third year prior to the current Trustees Report and a Version 3 file for the fifth year prior to the current Trustees Report. Data currently being used are government and farm sector OASDI, HI, and total wages and employment. Data from the latest files are used to estimate OASDI covered wages for the years available on each file.
- Data obtained from quarterly IRS Form 941 files, provided by Office of Systems (OS). Data currently used are the OASDI and HI taxable wages for 1978 to the most recent year available. The data represent changes in reported wages since the prior quarterly report. The most recent data are appended to previously reported data. Annual totals are computed and used to derive estimates of HI taxable wages, which are then used to develop OASDI covered wages for the most recent historical years.
- Data for the most recent ten years from the Quarterly EPOXY Report, received in hard-copy and, more recently, electronic formats obtained from OS. The data currently used are the number of workers with OASDI taxable earnings, number of workers with HI taxable earnings, distribution of number of HI workers by wage intervals, distribution of number of OASDI workers by wage intervals, number of persons with OASDI taxable wages, number of persons with HI taxable wages, number of persons with OASDI taxable self-employment earnings, and number of persons with HI taxable self-employment earnings.
- Data obtained from the Quarterly Trust Fund Letter, received from Office of Financial Policy and Operations (OFPO). Data currently used are OASDI and HI
taxable wages accumulated from all Forms 941 and $\mathrm{W}-2$ to date, and changes in selfemployment earnings and self-reported tips since the prior Letter. These data are for years 1978 to the most recent year available.
- Data obtained from OS on amounts of OASDI taxable wages on the Earnings Suspense File for 1937 through the second year prior to the current Trustees Report year. The data are used in estimating total OASDI covered employment.

2.3.c. Development of Output

Equation 2.3.1 - Ratio of Total Employment (RTE)

Since CPS data are only available for those aged 16 and over, RTEs could not be constructed or projected. For those aged 9 and under, we used covered population ratios (CPR), defined as the ratio of OASDI covered employment to the Social Security area population. CPRs for those aged 9 and younger are disaggregated by single-year of age and gender. Projected values for CPRs by age and gender are set to their latest historical levels. Thus, the aggregate CPR for those aged 9 and under is dependent on the projected age-gender distribution of the population. For those aged 10-15, we used total population ratios (TPR), defined as the ratio of TE to the Social Security area population. The TPRs are disaggregated by gender and age, including those aged 10-13 and 14-15. The TPR for males aged 10-13 is projected to remain constant at its latest historical level. The TPR for females aged 10-13, and the TPRs for males and females aged 14-15, are dependent on the RTP. An increase in the RTP leads to an increase in the TPRs.

The RTE for those aged 16 and over is defined as the ratio of TE to the sum of EW and ES (or alternatively, E less EU) and EDMIL. The RTE is disaggregated by gender and age, including those aged 16-17, 18-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, and 70 and over. Thus, COV contains 26 RTE equations, 13 for males, and 13 for females.

The aggregate RTE for those aged 16 and over is dependent on the projected age-gender distribution of employment. Each disaggregated RTE is dependent on its corresponding age-gender employment ratio. The employment ratio is roughly defined as the ratio of E to N . Increases in the employment ratio lead to decreases in the RTEs.

Equation 2.3.3 - Non-Covered Employment (NCE)

NCE is disaggregated by age and gender. Age groups include 14-15, 16-17, 18-19, 20-24, $25-29,30-34,35-39,40-44,45-49,50-54,55-59,60-64,65-69$, and 70 and over. Employment may not be OASDI covered for a variety of reasons mostly related to the type of work. Consequently, NCE is further disaggregated to the type-of-work components listed below.

Federal Civilian Government - All Federal civilian employees are HI (i.e., Medicare) covered. All Federal Civilian employees hired in January 1984 and later are covered under the Federal Employees Retirement System (FERS) and are OASDI covered. Employees hired before January 1984 are covered under the Civil Service Retirement System (CSRS) and are not OASDI covered. This "closed group" of relatively older CSRS employees is projected to fall to near zero by 2030.

State and Local Government - In 1983, about 70 percent of State and Local Government (S\&L) employment and wages were covered under OASDI and HI. Beginning April 1986, all newly hired S\&L employees were covered under HI. Beginning January 1990, all S\&L employees not under an S\&L retirement system were covered under OASDHI.

By 2002, about 30 and 10 percent of S\&L employment (and wages) are still not covered under OASDI and HI respectively. The closed group of relatively older S\&L employees not covered under HI is projected to fall to near zero by 2020. S\&L employment not covered under OASDI is projected to grow at about the same rate as the labor force.

Students at Public Schools - Prior to 2000, students working at S\&L public schools were covered under OASDI and HI if the other school employees were covered. In 2000, legislation offered an "open season" allowing schools to remove their students from coverage. Virtually all major schools opted for removal. Hence, almost no students working at their public schools are covered under OASDI or HI. Students at public schools are projected to grow at about the same rate as the population aged 18 to 24 .

Election Workers - Most S\&L election workers are subject to an earnings test and are not covered under OASDHI. The earnings test was raised from $\$ 100$ to $\$ 1,000$ beginning January 1995 and indexed beginning in 2000. Election workers are projected to grow at about the same rate as LC.

Private Household - The threshold for coverage of domestic employees' earnings was raised from $\$ 50$ per calendar quarter to $\$ 1,000$ per calendar year (CY) per employee. Domestic workers are no longer covered if under age 18. Private household employment is projected to grow at about the same rate as E and vary with RTP.

Students at Private Schools - All students working in private schools are not covered under OASDHI. Students at private schools are projected to grow at about the same rate as the population aged 18 to 24 .

Railroad - Employers do not submit payments for payroll taxes to the IRS for railroad employees. Railroad employees are projected by the Railroad Retirement Board.

Other Noncovered Workers - Set at a constant amount of 0.4 million to reflect relatively small and shrinking groups such as paperboys.

Underground Economy Workers - Set to the at-any-time employed in the other immigrant population who have no reported earnings and therefore are part of the underground economy (i.e., TEO_UND).

Equation 2.3.5-Self-Employed Only (SEO)

SEO is projected to grow at the same rate as ES.

Equation 2.3.7-Ratio of Combination Workers (RCMB)

Total CMB_TOT can be separated into two groups depending on whether they have OASDI covered wages under or over the TAXMAX. CMB_TOT with covered wages under the TAXMAX have taxable wages and self-employed income. CMB_TOT with covered wages over the TAXMAX have taxable wages only. CMB_TOT with covered wages over the TAXMAX would have paid taxes on their self-employed income if the TAXMAX had been eliminated.

Total CMB_TOT is projected as a ratio to WSW. This ratio is dependent on the RTP. If RTP rises, then the CMB_TOT falls.

Equation 2.3.10-Ratio of Covered Wages (RWSC)

RWSC is disaggregated by the following sectors: Federal Civilian government, Federal Military, S\&L government, and Private.

Federal Civilian government - Total Federal civilian employment and wages are split by retirement system. Those under FERS are OASDI covered, while those under CSRS are not. Employment and wages are projected for workers under each retirement system.
Employment under CSRS is a closed group that is expected to fall to zero by about 2030. Employment under FERS is defined as total Federal employment less employment under CSRS. Total Federal civilian employment is projected to grow at an average annual rate of about 0.2 percent from 2004 to the end of the short-range period, and about equal to the growth in the LC thereafter. The growth rates in the average wage for those under CSRS and FERS are projected based on, for the first five years, pay raises assumed under the most recent OMB FY Budget and on the growth rate in the CPI. Hence, the RWSC for the Federal civilian employment is defined as the ratio of wages for employment under FERS to total Federal civilian wages.

Federal Military - The RWSC for the Federal military sector is projected to remain constant at its latest actual historical level.

S\&L government - The RWSC for the S\&L government sector is projected to remain constant at its latest actual historical level.

Private - The private sector is separated into sub-sectors including private households, farm, railroad, tips, and a residual private "base". The RWSCs for the private household and farm sub-sectors are projected to remain constant at their latest actual historical levels. By definition, the RWSCs for the railroad and tips sub-sectors are projected to remain constant at 0.0 and 1.0 , respectively. The projected RWSC for the private base sub-sector is dependent on the ratio of EO wage workers in the private base sub-sector who are covered under the OASDI program to all EO wage workers in the private base sub-sector. We assume that all of EO will be wage workers employed in the private residual base sub-sector of the economy and that the proportion of EO that is covered under the OASDI program will decrease. Therefore, we assume that the RWSC for the private residual base sector will also decrease.

Equation 2.3.12-Ratio of Covered Self-Employed Earnings (RCSE)

The RCSE is projected to remain constant at its latest actual historical level.

Equation 2.3.17-Average Wage Index (AWI)

The growth in the AWI is projected to be equal to the growth in an economy-wide average wage (ACWC) defined as the ratio of WSD to total wage workers (covered and noncovered). Total wage workers are projected as the sum of WSW and the various groups of non-covered wage workers discussed above.

Equation 2.3.18-OASDI Taxable Maximum (TAXMAX)
By law, the growth in the AWI is used to increase the TAXMAX.

2.4. Effective TAXABLE PAYROLL (TAXPAY)

2.4.a. Overview

TAXPAY estimates historical annual taxable earnings data including total employee OASDI taxable wages (WTEE), total employer taxable wages (WTER), and total self-employed taxable income (SET). By law, each employee is required to pay the OASDI tax on wages from all covered jobs up to the TAXMAX, while each employer is required to pay the OASDI tax on the wages of each worker up to the TAXMAX. If an employee works more than one covered wage job and the sum of all covered wages exceeds the TAXMAX, the employee but not the employer is due a refund. Hence, WTER is greater than WTEE. The difference (i.e., WTER less WTEE) is defined as multi-employer refund wages (MER).

TAXPAY also estimates the historical annual effective OASDI taxable payroll (ETP). ETP is the amount of earnings in a year which, when multiplied by the combined employee-employer tax rate, yields the total amount of taxes due from wages and self-employed income in the year. ETP is used in estimating OASDI income and in determining income and cost rates and the actuarial balance. ETP is defined as WTER plus SET less one-half of MER.

TAXPAY projects annual values for ETP after first estimating its components. The components in turn are estimated by a collection of ratios. The employee taxable ratio (RWTEE) is defined as the ratio of WTEE to WSC. The multi-employer refund wage ratio (RMER) is defined as the ratio of MER to WSC. The self-employed net income taxable ratio (RSET) is defined as the ratio of SET to CSE_TOT. Equations 2.4.1 through 2.4.8 outline the projection methodology.

$$
\begin{align*}
& \text { RWTEE }=\text { RWTEE }(\cdot) \tag{2.4.1}\\
& \text { WTEE }=\text { RWTEE } * \mathrm{WSC} \tag{2.4.2}\\
& \text { RMER }=R M E R(\cdot) \tag{2.4.3}\\
& \text { MER }=\text { RMER } * \mathrm{WSC} \tag{2.4.4}\\
& \text { WTER }=\mathrm{WTEE}+\mathrm{MER} \tag{2.4.5}\\
& \text { RSET } \tag{2.4.6}\\
& \text { SET } \tag{2.4.7}\\
& \text { RSET }(\cdot) \tag{2.4.8}\\
& \text { ETP }
\end{align*}
$$

Over the short-range projection horizon (i.e., first 10 years), TAXPAY also projects annual OASDI wage tax liabilities (WTL) and self-employment tax liabilities (SEL). In Equation 2.4.9, WTL is the product of the effective taxable wages, defined as WTER less one-half of MER, and the combined OASDI employee-employer tax rate (TRW). In Equation 2.4.10, SEL is the product of SET and the OASDI self-employed tax rate (TRSE).

$$
\begin{align*}
& \mathrm{WTL}=\mathrm{WTER} * \mathrm{TRW} \tag{2.4.9}\\
& \mathrm{SEL}=\mathrm{SET} * \mathrm{TRSE} \tag{2.4.10}
\end{align*}
$$

Also over the short-range horizon, TAXPAY decomposes WTL into quarterly wage tax liabilities (WTLQ) then to quarterly wage tax collections (WTLQC). TAXPAY also decomposes SEL into quarterly self-employed net income tax collections (SELQC).

$$
\begin{align*}
\mathrm{WTLQ} & =W T L Q(\cdot) \tag{2.4.11}\\
\mathrm{WTLQC} & =W T L Q C(\cdot) \tag{2.4.12}\\
\mathrm{SELQC} & =S E L Q C(\cdot) \tag{2.4.13}
\end{align*}
$$

Finally, over the first two projected quarters, TAXPAY estimates of WTLQC and SELQC are replaced with ones from the most recent OMB FY Budget. And, over the first four projected quarters, TAXPAY includes estimates for appropriation adjustments (AA).

$$
\begin{equation*}
\mathrm{AA} \quad=A A(\cdot) \tag{2.4.14}
\end{equation*}
$$

2.4.b. Input Data

Data used to obtain values input directly to model

- Data obtained from ORES by email for the amounts of single and multi-employer refunds for the latest 5 years. Each year, data are updated.
- Data obtained from ORES are tabulations of quarterly Form 941 data. Data currently used are the OASDI, HI, and income taxable wages by sector for the most recent five years. The data represent changes in reported wages since the prior quarterly report. The most recent data are appended to previously reported data. Annual totals are computed and used to derive estimates of OASDI taxable wages by sector for the latest historical years.
- Data obtained from the most recently available 1.0\% CWHS active file, maintained on Social Security's mainframe and made available by ORES. The years of data are

1951 to the third year prior to the current Trustees Report year. The data are used for comparison of OASDI taxable earnings from other sources.

- Data obtained from quarterly IRS Form 941 files, provided by OS. Data currently used are the OASDI and HI taxable wages for 1978 to the most recent year available. The data represent changes in reported wages since the prior quarterly report. The most recent data are appended to previously reported data. Annual totals are computed and used to derive estimates of OASDI taxable wages for the most recent historical years.
- Data for the most recent ten years from the quarterly EPOXY Report, received in hard-copy and, more recently, electronic formats obtained from OS. The data currently used are the total number of workers with OASDI taxable earnings, total number of workers with OASDI self-employed taxable earnings, distribution of number of HI workers by wage intervals, distribution of number of OASDI workers by wage intervals, number of persons with OASDI taxable wages, number of persons with HI taxable wages, number of persons with OASDI taxable self-employment, number of persons with HI taxable self-employment, number of workers with singleemployer excess wages, and number of workers with multi-employer excess wages.
- Data obtained from the Quarterly Trust Fund Letter, received from OFPO. Data currently used are OASDI and HI taxable wages accumulated from all Forms 941 and $\mathrm{W}-2$ to date, and changes in self-employment earnings and self-reported tips since the prior Letter. These data are for years 1978 to the most recent year available.

Long-Range OASDI Projection Data

Historical and projected data from Sections 2.1, 2.2, and 2.3 are used as input. Data for the following variables have final year of 2099. Each variable is shown with starting year.

AIW
AWSCFM
AWSCML
DMWCHI
DMWCOD
ECFCHO

ECFCOD
ECHITOT
ECSEHI

ECSENOMAX

Average wage for indexing (\$), 1971
Average covered wage for farm workers (\$), 1971
Average covered wage for military (\$), 1971
Deemed military wage credits for HI (\$ millions), 1978
Deemed military wage credits for OASDI (\$ millions), 1978
Number of HI-only covered Federal Civilian workers (millions), 1983
Number of OASDI covered Federal Civilian workers (millions), 1983
Number of HI covered workers (millions), 1971
Number of HI covered self-employed workers (millions), 1994
Number of covered self-employed workers if no taxable maximum (millions), 1983

ECSEO	Number of OASDI covered self-employed only workers (millions), 1971
ECSEOD	Number of OASDI covered self-employed workers (millions), 1971
ECSLNOIS	Number of non-OASDI covered State and Local workers including students (millions), 1983
ECSLNRP	Number of OASDI covered State and Local workers with no retirement plan (millions), 1983
ECSLOD	Number of OASDI covered State and Local workers (millions), 1983
ECSLP91	Number of State and Local workers covered under OASDI under pre-1991 law (millions), 1983
ECWSHI	Number of HI covered wage workers (millions), 1983
ECWSOD_MEF	Number of OASDI covered wage workers on the Master Earnings File (MEF) in millions, 1990
ECWSODFU16_MEF	Number of OASDI covered wage workers on the MEF, female under 16 years old (millions), 1990
ECWSODF1619_MEF	Number of OASDI covered wage workers on the MEF, female 16 to 19 years old (millions), 1990
ECWSODF2024_MEF	Number of OASDI covered wage workers on the MEF, female 20 to 24 years old (millions), 1990
ECWSODF2529_MEF	Number of OASDI covered wage workers on the MEF, female 25 to 29 years old (millions), 1990
ECWSODF3034_MEF	Number of OASDI covered wage workers on the MEF, female 30 to 34 years old (millions), 1990
ECWSODF3539_MEF	Number of OASDI covered wage workers on the MEF, female 35 to 39 years old (millions), 1990
ECWSODF4044_MEF	Number of OASDI covered wage workers on the MEF, female 40 to 44 years old (millions), 1990
ECWSODF4549_MEF	Number of OASDI covered wage workers on the MEF, female 45 to 49 years old (millions), 1990
ECWSODF5054_MEF	Number of OASDI covered wage workers on the MEF, female 50 to 54 years old (millions), 1990
ECWSODF5559_MEF	Number of OASDI covered wage workers on the MEF, female 55 to 59 years old (millions), 1990
ECWSODF6064_MEF	Number of OASDI covered wage workers on the MEF, female 60 to 64 years old (millions), 1990
ECWSODF6569_MEF	Number of OASDI covered wage workers on the MEF, female 65 to 69 years old (millions), 1990
ECWSODF700_MEF	Number of OASDI covered wage workers on the MEF, female 70 years old and older (millions), 1990
ECWSODMU16_MEF	Number of OASDI covered wage workers on the MEF, male under 16 years old (millions), 1990

ECWSODM1619_MEF	Number of OASDI covered wage workers on the MEF, male 16 to 19 years old (millions), 1990 Number of OASDI covered wage workers on the MEF, male 20 to 24 years old (millions), 1990
ECWSODM2024_MEF	
ECWSODM2529_MEF	Number of OASDI covered wage workers on the MEF, male 25 to 29 years old (millions), 1990
ECWSODM3034_MEF	Number of OASDI covered wage workers on the MEF, male 30 to 34 years old (millions), 1990 Number of OASDI covered wage workers on the MEF, male 35 to 39 years old (millions), 1990
ECWSODM3539_MEF	

TCFCD	Proportion of annual Federal Civilian wages earned in each quarter (units), 1971
TCMD	Proportion of annual military wages earned in each quarter (units), 1971
TCPD	Proportion of annual private sector wages earned in each quarter (units), 1971
TCSLD	Proportion of annual State and Local wages earned in each quarter (units), 1971
WSCCMB	Wages earned in same year by all SE workers with both types of earnings (\$ millions), 1991
WSCFCHO	HI Covered wages of Federal Civilian HI-only workers (\$ millions), 1983
WSCFCOD	OASDI Covered wages of Federal Civilian workers (\$ millions), 1971
WSCFM	Covered wages of farm workers (\$ millions), 1971
WSCHI	HI covered wages (\$ millions), 1983
WSCML	Covered wages of members of the Armed Forces (\$ millions), 1971
WSCOD	OASDI covered wages (\$ millions), 1971
WSCOD_SF	OASDI covered wages on the Suspense File (\$ millions), 1971
WSCPHH	Covered wages of private household workers (\$ millions), 1971
WSCPNF	Covered wages of private nonfarm workers (\$ millions), 1971
WSCSLHI	HI covered State and Local wages (\$ millions), 1983
WSCSLNRP	Covered wages of State and Local workers with no retirement plan (\$ millions), 1971
WSCSLOD	OASDI covered State and Local wages (\$ millions), 1971
WSCSLP91	Wages of State and Local workers covered under OASDI under pre-1991 law (\$ millions), 1971
WSD	Total NIPA wages (\$ millions), 1971
WSP	Total NIPA private sector wages (\$ millions), 1971
WSS	Total NIPA compensation (\$ millions), 1971
WSSLCG	Wages of State and Local workers not covered under HI (\$ millions), 1983
WSSLNOIS	Wages of non-OASDI covered State and Local workers including students (\$ millions), 1983
WSSLSTUD	Wages of noncovered students at public schools employed by their school (\$ millions), 1983
WSTTIPSSR	Taxable tips reported by tip earner instead of employer (\$ millions), 1978
WTWPO	Proportion of annual Postal Service wages earned in each quarter (units), 1971

- FICA, SECA, and Federal Employer tax transfers by month from the Department of the Treasury for years 1984 to 2008.
- FICA, SECA, and Federal Employer tax transfers by month from the Department of the Treasury for January 2009 and estimated transfers for February 2009 to June 2009.
- FICA and SECA tax transfers by month split by liability period from the Department of the Treasury for 1984 to 2007.
- FICA and SECA tax transfers by month split by liability period from the Department of the Treasury for January 2008 to June 2008.
- Monthly OASI, DI, and HI deposits by States, received periodically throughout the year from the Department of the Treasury for 1984 to 2008. (This is an obsolete type of revenue which has had no valid non-zero amount since 2002.)
- Historical annual HI taxable self-employment earnings for 1983 to 2006.
- Historical annual OASDI taxable self-employment earnings for 1971 to 2006.
- Historical annual OASDI multi-employer refund wages for 1971 to 2007.
- Historical annual HI taxable wages for 1983 to 2007.
- Historical annual OASDI taxable wages for 1971 to 2007.
- Historical annual HI-only taxable Federal Civilian wages for 1987 to 2003.
- Historical annual OASDI taxable Federal Civilian wages for 1971 to 2003.
- Historical annual HI taxable Federal Civilian wages for 1987 to 2003.
- Historical annual OASDI taxable farm sector wages for 1971 to 2003.
- Historical annual HI taxable farm sector wages for 1991 to 2003.
- Historical annual OASDI taxable military sector wages for 1971 to 2003.
- Historical annual HI taxable military sector wages for 1991 to 2003.
- Historical annual OASDI taxable State and Local government sector wages for 1971 to 2003.
- Historical annual HI taxable State and Local government sector wages for 1987 to 2003.
- Historical and projected annual OASDI taxable tips for employees as reported by employers for 1971 to 2019.
- Historical and projected annual OASDI taxable tips for employers as reported by employers for 1971 to 2019.
- Annual and quarterly OASDI and HI taxable wages for calendar year 2008.
- Estimated annual HI taxable payroll for railroad workers for 2007 to 2099.
- Historical FICA and SECA appropriation adjustments for OASI, DI, and HI by month for 1968 to 2008.
- Historical FICA revenues for OASI, DI, and HI by quarter for 1984 to 2008.
- Historical SECA revenues for OASI, DI, and HI by quarter for 1984 to 2008.
- Historical Federal Employer revenues for OASI, DI, and HI by quarter for 1984 to 2008.
- Historical Deposits by States for OASI, DI, and HI by quarter for 1984 to 2008.
- Historical single-employer refunds of excess taxes for OASI, DI, and HI by quarter for 1984 to 2008.
- Historical FICA credits for OASI and DI by quarter for 1984 to 2008.
- Historical SECA credits for OASI, DI, and HI by quarter for 1984 to 2008.
- Historical multi-employer refunds of excess taxes for OASI, DI, and HI by month for 1968 to 2008.
- Data used to estimate future FICA appropriation adjustments for 2008 to 2010 These adjustments are used to make sure that transfers to the Trust Funds reflect taxable wage amounts reported to SSA. The data input includes estimated quarterly tax liabilities ultimately owed the Trust Funds from President's Budget model
solutions, quarterly tax liabilities for 2009Q1 from IRS-941 tabulations, estimates of tax liabilities for all prior years for 2009Q1 to 2010Q2, and estimated ratios of quarterly liability amounts reported to SSA over ultimate values for 2008Q2 to 2009Q2. Values are estimated for the four quarters of the Trustees Report year and for the following two quarters.
- Miscellaneous historical covered employment and earnings data:
- HI Covered self-employed workers for 1986 to 1993.
- Number of OASDI covered wage workers by age group and gender for 1996.
- HI covered self-employment earnings for 1971 to 1993.
- Covered self-employment earnings if there were no taxable maximum for 1971 to 1993.
- OASDI covered self-employment earnings for 1971 to 1993.
- Miscellaneous historical and fixed projected data:
- Quarterly distribution of annual OASDI taxable farm wages for 1971 to 2020.
- Quarterly OASDI covered private nonfarm sector wages for 1971 to 1977.
- Quarterly OASDI covered State and Local government sector wages for 1971 to 1977.
- Quarterly OASDI covered military sector wages for 1971 to 1977.
- Quarterly OASDI covered Federal Civilian sector wages for 1971 to 1977.
- Quarterly OASDI taxable private nonfarm sector wages for 1971 to 1977.
- Quarterly OASDI taxable State and Local government sector wages for 1971 to 1977.
- Quarterly OASDI taxable military sector wages for 1971 to 1977.
- Quarterly OASDI taxable Federal Civilian sector wages for 1971 to 1977.
- Quarterly OASDI taxable farm sector wages for 1971 to 1977.
- OASDI employee, employer, and self-employment tax rates from 1937 to

2100. These contribution rates are set according to the Social Security Act of 1935 and amendments to the Act through 2004. The rates are updated when legislation mandates a change (which hasn't occurred since 2000).

- Annual OASDI employee credit tax rate for 1984.
- Annual OASDI self-employment credit tax rates for 1984 to 1989.
- Annual trend variable for taxable to covered wage ratio calculation for 1971 to 2100 (no longer used)
- Annual trend variable for taxable to covered self-employment earnings ratio calculation for 1971 to 2100 (no longer used)
- Proportions of OASDI tax liabilities for self-employment earnings for the current and prior calendar year estimated to be collected in each quarter for 1971 to 2100. (In any particular quarter, some self-employed individuals are paying taxes on earnings from the prior year and some are paying from the current year's earnings.) Values are derived from historical data from the Office of Tax Analysis (OTA) in the Department of the Treasury for the amount of self-employment taxes transferred to the OASDI Trust Funds in each month split by the calendar year (either the current or the prior) in which the self-employment income was earned. The data are updated every year after historical information for a complete new year is received (usually in March).
- Average OASDI covered wages by age groups and gender for 1996.
- Ratio of OASDI taxable to covered wages by age groups and gender for 1996.
- Corrections to prior FICA appropriation adjustments made in March 2000.
- Projected single-employer refunds of excess tax by month for September 2009 to September 2020.
- An adjustment factor to trend variable for ratio of OASDI taxable to covered wages for 1971 to 2100 . A factor of 0.4 is input for years 2002 to 2100 and is applied to model-computed time trend adjustments to RWTEE. Historical analysis suggests a "trend" rate of decline in RWTEE of about 0.0016 per year through 2001. This trend reflects a movement toward greater amounts of wages being paid to workers earning above the taxable maximum. We expect this trend to continue to the end of the shortrange projection horizon, but at a slower rate. Consequently, we assume an adjustment factor of 0.4 such that the trend annual rate of decline from 2002 to the end of the short-range projection horizon is about 0.0006 per year (i.e., 0.0016 * 0.4).

The adjustment factor has not been updated since first decided upon. It will be changed if and when it is deemed appropriate.

- Add factor for ratio of OASDI taxable to covered Federal Civilian government sector wages for 2002 to 2020.
- Add factor for ratio of OASDI taxable to covered State and Local government sector wages for 2002 to 2020.
- Add factor to adjust model-computed add factor for the ratio of OASDI taxable to covered self-employment earnings for 2007.

2.4.c. Development of Output

Equation 2.4.1-Employee Taxable Ratio (RWTEE)

Over the short-range projection horizon, the projected value for RWTEE is the sum of the model's "raw" estimate and an addfactor. The raw estimate for RWTEE is dependent on the distribution of workers by wage interval, the RELMAX, RTP, the age-gender distribution of wage workers, and a time trend adjustment. The projected distribution of workers by wage interval is an average (or amalgam) distribution over the 1993 through 2004 period. Holding other factors constant, a distribution with relatively more workers with wages over the TAXMAX leads to a lower RWTEE. The RELMAX is defined as the ratio of the TAXMAX to the ACW. A higher RELMAX leads to a higher RWTEE. An increase in the RTP also leads to a higher RWTEE. The change in the projected RWTEE due to the change in the age-gender distribution of wage workers is calculated by allowing employment by age and gender to change while holding taxable ratios (and average covered wages) by age and gender constant to levels in 1996. The time trend adjustment reduces the level of RWTEE by about 0.6 percentage point over the short-range projection horizon.

The addfactor is the product of a "base" adjustment and an assumed weight. The base adjustment is defined as the actual value for RWTEE in the latest historical (or base) year less the raw estimated value for the same period. The weight has an assumed value of 0.9 for the first projected year, then values of 0.8 in the second projected year, 0.7 in the third projected year, \ldots, and 0.0 in the tenth projected year (i.e., the end of the short-range projection horizon). The addfactor is necessary because we assume that the distribution of wage workers by earnings interval in the base year will gradually change to the amalgam distribution by the end of the short-range period and remain constant thereafter.

Over the long-range projection horizon, RWTEE is assumed to remain constant.

RWTEEs are also projected for various sub-aggregates including Federal Civilian employees under FERS and CSRS, Federal Civilian employees under CSRS only, S\&L employees covered under OASDI, S\&L employees covered under HI only, U.S. armed forces, and agriculture. The RWTEE for each sub-aggregate is dependent only on its sub-aggregate RELMAX, that is, the ratio of the TAXMAX to the sub-aggregate's average covered wage.

Equation 2.4.3-Multi-Employer Refund Wage Ratio (RMER)

The RMER is functionally related to the RWTEE. As RWTEE approaches one, then RMER approaches zero. In between the limit values, RMER is positive. Given the present position of RWTEE and RMER on the function, a projected decline in RWTEE leads to an increase in RMER.

The projected RMER is also dependent on RU. An increase in RU leads to a decrease in RMER.

Equation 2.4.6 - Self-Employed Net Income Taxable Ratio (RSET)

The RSET is disaggregated by type of self-employed worker, SEO and CMB_TOT.
SEO - The RSET is dependent on the distribution of self-employed workers by income interval and a RELMAX. The projected distribution of self-employed workers by income interval is set to the 1996 distribution. The RELMAX is defined here as the ratio of the TAXMAX to the average income for SEO. A higher RELMAX leads to a higher RSET.

CMB_TOT - Taxable self-employed net income for CMB_TOT is projected in two steps. First, a taxable earnings (wages and self-employed income) ratio for CMB_TOT is projected based on the 1996 distribution and a RELMAX defined as the ratio of the TAXMAX to the average covered earnings. The projected level of taxable earnings for CMB_TOT is the product of the estimated taxable earnings ratio for CMB_TOT and their covered earnings. Second, a taxable wage ratio for CMB_TOT is projected based on a RELMAX defined as the ratio of the TAXMAX to the average covered wage for CMB_TOT. The projected level of taxable wages for CMB_TOT is the product of the estimated taxable wage ratio for CMB_TOT and their covered wages.

Taxable self-employed net income for CMB_TOT is obtained by subtracting taxable wages from taxable earnings for CMB_TOT.

A "combined" RSET is calculated as the ratio of taxable self-employed net income for SEO and CMB_TOT to CSE_TOT. As with the RWTEE, the combined RSET is adjusted over the short-range period due to other factors (i.e., RTP, the age-gender distribution of workers, and a trend). The effect of the other factors are taken from RWTEE and "scaled." That is, RSET
is adjusted by a percent effect (as opposed to percentage point) that is equal to the percent change in RWTEE due to changes in these other factors.

It is important to note that while the RWTEE is held constant after the short-range period, the RSETs for self-employed workers are not. After the short-range period, the projected RSETs for SEO and CMB_TOT continue to be dependent on their respective RELMAXs. Since by law the TAXMAX grows at the rate of the AWI and since ACSE is assumed to grow faster than the ACW (since only ACW declines with the growth in fringe benefits), the RELMAXs for self-employed workers decline over the long-range period while the RELMAX for wage workers is approximately constant. Hence, the RSETs for SEO and CMB_TOT are projected to decline over the long-range period while the RWTEE is held constant.

Equation 2.4.11-Quarterly Wage Tax Liabilities (WTLQ)
Total WTLQ is summed from sector components that include Federal Civilian, Federal Military, S\&L, Private Household, Farm, Self-reported Tips, and residual Private Nonfarm. Sector WTLQs are determined by computing ratios of quarterly to annual liabilities for each quarter. These are calculated for the Private Nonfarm, S\&L, Federal Civilian and Military sectors. Each is dependent on the quarterly distribution of WSD and the RWTEE for the relevant sector, and on a payday adjustment that takes into account the actual number of paydays that fall into a particular calendar quarter. WTLQ ratios are also calculated for each quarter for the other sectors. However, these are expected to be constants over the projection horizon.

Equation 2.4.12-Quarterly Wage Tax Collections (WTLQC)

Employers incur tax liabilities when they pay wages to their employees. These liabilities are required to be deposited with the U.S. Treasury by employers based on the amount of total payroll tax liability (income taxes plus Social Security and Medicare taxes withheld) accumulated. Some very large employers must deposit their tax liabilities the next banking day after paying their employees. Other levels of accumulated tax liabilities require depositing within three days, by the middle of the following month, or by the end of the month following the quarter. If employers follow these deposit requirements, the result is that all tax liability for a particular quarter is deposited by the last day of the month following the end of the quarter. Thus, the WTLQC for any particular quarter are the sum of the tax liabilities deposited for wages paid in the same quarter and the liabilities deposited for wages paid in the prior quarter.

WTLQC are summed from sector components that include the Federal Civilian, Federal Military, Farm, S\&L, and residual Private Nonfarm (including Private Household and SelfReported Tips). For the Federal Civilian and Military sectors, the WTLQC are set equal to their respective WTLQ since tax liabilities for the two sectors are collected immediately. The WTLQC for Farm is also set equal to its WTLQ, due in part to the fact that farms report tax liabilities annually. For the S\&L and Private Nonfarm sectors, WTLQC are the product of

WTLQ and the proportion of WTLQ that should be deposited in the month following the end of each quarter. This proportion is based on the deposit requirements and estimates of accumulated tax liabilities, which in turn are based on firm size (or total wages paid).

Equation 2.4.13 - Quarterly Self-Employed Net Income Tax Collections (SELQC)
For wage workers, annual liabilities (WTL) are distributed to quarterly liabilities (WTLQ), which in turn are distributed to quarterly collections (WTLQC). However, for self-employed workers, annual liabilities (SEL) are distributed directly to SELQC, since the SSA only receives self-employed liability amounts on an annual basis (from tabulations of Form 1040 Schedule SE provided by IRS).

SEL for a particular calendar year are distributed as collections to the four quarters of that year and to the first three quarters of the next year. This distribution uses quarterly proportions that are based on an historical pattern of the amount of SEL collected in each month, as estimated by the OTA. The OTA estimates reflect IRS regulations that require selfemployed workers to deposit estimated tax liabilities four times a year (January, April, June, and September).

Equation 2.4.14 - Appropriation Adjustments (AA)

We estimate WTLQC and SELQC for the next two quarters based on projected levels of WSD and Y in the various OMB FY Budgets. The Treasury uses these estimates to make initial appropriations to the OASDI Trust Funds over the period. Roughly one year after an initial appropriation has been made for a quarter, the initial appropriation is adjusted based on certified taxable wages reported on Forms 941 and W-2 and taxable self-employment income reported on Forms 1040 Schedule SE. This appropriation adjustment occurs quarterly and includes amounts due to newly-reported wages and self-employment income for all earlier periods.

FICA appropriation adjustments for wages are projected for all quarters for which we know what the Treasury will transfer. This generally means that we make estimates for adjustments to occur through the second quarter of the year following the Trustees Report year. The projected adjustment for each quarter is composed of two parts. The first part estimates the error in the initial appropriation for the fourth earlier quarter. This error is defined as the difference between the Treasury's initial appropriation and that portion of TAXPAY's latest estimate for that quarter which is expected to be certified at the point when the adjustment is made. The second part is an estimate of the tax liability from additional certified wages for all previous periods and is based on an average of additional amounts over a recent historical period. These estimates are currently made in separate Excel files (generally named "EstimatedAppAdjAlt2.xls" and placed in a folder unique to the particular Trustees Report, e.g., \lwmpietlusrlwmpiet\Excel\TR10), where they are further documented in a "Notes" sheet in the Excel file.

Appropriation adjustments for self-employment income are projected over the entire projection horizon based on the historical pattern of reporting. These estimates are made in TAXPAY.

Appendix 2-1
 Equations

2.1 U.S. Employment (USEMP)

UNEMPLOYMENT RATES, PRELIMINARY

MALES

```
RM1617_P = RM1617_P.1 + (-36.2076 * DIFF(RTP) - 14.2816 * DIFF(RTP.1) - 26.6756 * DIFF(RTP.2) - 16.9202 * DIFF(RTP.3)) *
50.00/44.72
            RM1617
                        Ordinary Least Squares
                        QUARTERLY data for 132 periods from 1976Q1 to 2008Q4
                            Date: 23 OCT 2009
                            diff(rm1617)
            = - 36.2076 * diff(rtp) - 14.2816 * diff(rtp)[-1]
                (2.29349) (0.87160)
                - 26.6756 * diff(rtp)[-2] - 16.9202 * diff(rtp)[-3]
                (1.63426) (1.06303)
                + 1.64214 * minw - 0.90365 * minw[-1] + 0.06020 * minw[-2]
                (1.76311) (0.70381) (0.04365)
                - 0.77627 * minw[-3] - 0.12616
                (0.72653) (0.26611)
\begin{tabular}{lrlllll} 
Sum Sq & 198.967 & Std Err & 1.2719 & LHS Mean & 0.0553 \\
R Sq & 0.1483 & R Bar Sq & 0.0929 & F & 8,123 & 2.6769
\end{tabular}
D.W. (1)-2.
```

RM1819_P = RM1819_P.1 + (-48.4227 * DIFF(RTP) - 25.8766 * DIFF(RTP.1) - 21.7466 * DIFF(RTP.2) + 1.1551 * DIFF(RTP.3)) *
50.00/44.72

```
RM1819
    Ordinary Least Squares
    QUARTERLY data for 132 periods from 1976Q1 to 2008Q4
    Date: 23 OCT 2009
    diff(rm1819)
        = - 48.4227 * diff(rtp) - 25.8766 * diff(rtp)[-1]
            (3.45103) (1.77685)
            - 21.7466 * diff(rtp)[-2] + 1.15512 * diff(rtp)[-3]
                (1.49900) (0.08165)
            + 0.62723 * minw - 0.48738 * minw[-1] + 0.67739 * minw[-2]
                (0.75770) (0.42710) (0.55270)
                - 0.79385 * minw[-3] - 0.11294
                (0.83595) (0.26803)
    Sum Sq 157.172 
    R Sq 
```

RM2024_P = RM2024_P.1 + (-51.6518 * DIFF(RTP) - 16.6465 * DIFF(RTP.1) - 13.1350 * DIFF(RTP.2) - 10.9309 * DIFF(RTP.3)) *
50.00/44.72

```
RM2024
Ordinary Least Squares
QUARTERLY data for }132\mathrm{ periods from 1976Q1 to 2008Q4
Date: 23 OCT 2009
diff(rm2024)
= - 51.6518 * diff(rtp) - 16.6465 * diff(rtp)[-1]
                (7.75482) (2.35721)
                - 13.1350 * diff(rtp)[-2] - 10.9309 * diff(rtp)[-3] + 0.00093
                (1.86731) (1.59404) (0.01922)
Sum Sq 38.7297 Std Err 0.5522 LHS Mean -0.0048
R Sq 0.4356 R Bar Sq 0.4178 F 4,127 24.5002
D.W. ( 1) 2.4679 D.W. ( 4) 2.2856
```

RM2529_P = RM2529_P.1 + (-37.9533 * DIFF(RTP) - 17.3941 * DIFF(RTP.1) - 14.9170 * DIFF(RTP.2) - 7.0513 * DIFF(RTP.3)) * 50.00/44.72

RM2529

Ordinary Least Squares
QUARTERLY data for 129 periods from 1976 Q4 to 2008Q4
Date: 23 OCT 2009
diff(rm2529)

$$
\begin{aligned}
& =-37.9533 \text { * } \operatorname{diff}(r t p)-17.3941 * \operatorname{diff}(r t p)[-1] \\
& \text { (7.06307) (3.05222) }
\end{aligned}
$$

RM3034_P = RM3034_P.1 + (-23.6417 * DIFF(RTP) - 14.1284 * DIFF(RTP.1) - 7.5008 * DIFF(RTP.2) - 9.7232 * DIFF(RTP.3)) * 50.00/44.72 RM3034
Ordinary Least Squares
QUARTERLY data for 129 periods from 1976 Q4 to 2008Q4
Date: 23 OCT 2009
diff(rm3034)
$=-23.6417$ * diff(rtp) - 14.1286 * diff(rtp)[-1] (6.21241) (3.50067)

- 7.50079 * diff(rtp)[-2] - 9.7232 * diff(rtp) [-3] + 0.01058 (1.85832) (2.50593) (0.38580)

Sum Sq 12.0091 Std Err 0.3112 LHS Mean 0.0119
R Sq 0.4221 R Bar Sq 0.4034 F 4,124 22.6397
D.W. (1) 2.1876 D.W. (4) 1.8816

RM3539_P = RM3539_P.1 + (-27.6828 * DIFF(RTP) - 5.4850 * DIFF(RTP.1) - $10.8974 * \operatorname{DIFF}($ RTP.2 $)-9.8932 * \operatorname{DIFF}($ RTP.3 $)$ * 50.00/44.72 RM3539
Ordinary Least Squares
QUARTERLY data for 129 periods from 1976 Q to 2008Q4
Date: 23 OCT 2009
diff(rm3539)

```
= - 27.6828 * diff(rtp) - 5.48498 * diff(rtp)[-1]
                (6.57840) (1.22901)
                    - 10.8974 * diff(rtp)[-2] - 9.8932 * diff(rtp)[-3] + 0.01127
                        (2.44154) (2.30580) (0.37184)
```

Sum Sq	14.6843	Std Err	0.3441	LHS Mean	0.0130	
R Sq	0.3795	R Bar Sq	0.3595	F 4,124	18.9589	
D.W.(1)	2.3381	D.W.(4)	1.9092			

RM4044_P = RM4044_P. $1+(-14.6558 * \operatorname{DIFF}(R T P)-14.9735 * \operatorname{DIFF}(R T P .1)-8.2594 * \operatorname{DIFF}(R T P .2)-5.5023 * \operatorname{DIFF}(R T P .3)) * 50.00 / 44.72$ RM4044
Ordinary Least Squares
QUARTERLY data for 129 periods from 1976 Q4 to 2008Q4
Date: 23 OCT 2009
diff(rm4044)
$=-14.6558 * \operatorname{diff}(r t p)-14.9735 * \operatorname{diff}(r t p)[-1]$ (3.48851) (3.36064)

- 8.25944 * diff(rtp) [-2] - 5.50233 * diff(rtp) [-3] + 0.00570
(1.85359)(1.28455) (0.18829)

| Sum Sq | 14.6357 | Std Err | 0.3436 | LHS Mean | 0.0064 |
| :--- | ---: | :--- | ---: | :--- | ---: | ---: |
| R Sq | 0.2692 | R Bar Sq | 0.2456 | F 4.124 | 11.4206 |

RM4549_P = RM4549_P. $1+(-20.7806 * \operatorname{DIFF}(R T P)-11.5121 * \operatorname{DIFF}($ RTP.1 $)-9.9409 * \operatorname{DIFF}(R T P .2)+1.5480 * \operatorname{DIFF}(R T P .3))$ * 50.00/44.72

```
RM4549
    Ordinary Least Squares
    QUARTERLY data for 129 periods from 1976Q4 to 2008Q4
    Date: 23 OCT 2009
    diff(rm4549)
        = - 20.7806 * diff(rtp) - 11.5121 * diff(rtp)[-1]
            (5.31669) (2.77721)
            - 9.9409 * diff(rtp)[-2] + 1.54797 * diff(rtp)[-3] + 0.00874
                (2.39795) (0.38844) (0.31046)
    Sum Sq 12.6680 Std Err 0.3196 LHS Mean 0.0114
    R Sq 0.3249 R Bar Sq 0.3031 F 4,124 14.9185
    D.W.( 1) 2.2355 D.W.( 4) 1.787
```

RM5054_P = RM5054_P.1 + (-19.3341 * DIFF(RTP) - 9.5336 * DIFF(RTP.1) - 8.8784 * DIFF(RTP.2) - 7.6218 * DIFF(RTP.3)) * 50.00/44.72 RM5054
Ordinary Least Squares
QUARTERLY data for 129 periods from 1976Q4 to 2008Q4
Date: 23 OCT 2009
diff(rm5054)

```
        = - 19.3341 * diff(rtp) - 9.5336 * diff(rtp)[-1]
                (4.72314) (2.19601)
                - 8.87840 * diff(rtp)[-2] - 7.62180 * diff(rtp) [-3] + 0.01083
                (2.04491) (1.82617) (0.36742)
    Sum Sq 13.8950 Std Err 0.3347 LHS Mean 0.0118
    R Sq 0.2957 R Bar Sq 0.2730 F 4,124 13.0163
```


RM5559_P = RM5559_P.1 + (-25.9031 * DIFF(RTP) - 11.4442 * DIFF(RTP.1) - 4.5421 * DIFF(RTP.2) + 0.55815 * DIFF(RTP.3)) * 50.00/44.72

```
RM5559
    Ordinary Least Squares
    QUARTERLY data for 129 periods from 1976Q4 to 2008Q4
    Date: 23 OCT 2009
```

```
diff(rm5559)
```

```
    = - 25.9031 * diff(rtp) - 11.4442 * diff(rtp)[-1]
                (5.21572) (2.17280)
        - 4.54211 * diff(rtp)[-2] + 0.55815 * diff(rtp)[-3] + 0.00326
        (0.86229) (0.11023) (0.09111)
\begin{tabular}{lrllllr} 
Sum Sq & 20.4526 & Std Err & 0.4061 & LHS Mean & 0.0068 \\
R Sq & 0.2605 & R Bar Sq & 0.2366 & F 4,124 & 10.9177
\end{tabular}
```

RM6064_P = RM6064_P. 1 + (1.3133 * DIFF(RTP) - 12.9625 * DIFF(RTP.1) - 2.4816 * DIFF(RTP.2) - 14.4797 * DIFF(RTP.3)) * 50.00/44.72 RM6064
Ordinary Least Squares
QUARTERLY data for 129 periods from 1976 Q to 2008Q4
Date: 23 OCT 2009
diff(rm6064)

Sum Sq 22.5085 Std Err 0.4261 LHS Mean 0.0021
R Sq 0.1187 R Bar Sq 0.0903 F 4,124 4.1768
D.W. (1) 2.3485 D.W. (4) 1.9007

RM6569_P = RM6569_P.1 + (-19.5151 * DIFF(RTP) + 4.9785 * DIFF(RTP.1) -13.3449 * DIFF(RTP.2) + 2.4706 * DIFF(RTP.3)) * 50.00/44.72

```
RM6569
    Ordinary Least Squares
    QUARTERLY data for 129 periods from 1976Q4 to 2008Q4
    Date: 23 OCT 2009
    diff(rm6569)
        = - 19.5151 * diff(rtp) + 4.97852 * diff(rtp)[-1]
                (2.18595) (0.52582)
        - 13.3449 * diff(rtp)[-2] + 2.47056 * diff(rtp)[-3] - 0.01208
                (1.40935) (0.27142) (0.18783)
Sum Sq 66.0895 Std Err 0.7301 LHS Mean -0.0096
R Sq 0.0551 R Bar Sq 0.0246 F 4,124 1.8065
D.W.( 1) 2.6235 D.W.( 4) 1.508
```

RM7074_P = RM7074_P.1 + (4.1938 * DIFF(RTP) - 5.9012 * DIFF(RTP.1) - 27.0406 * DIFF(RTP.2) + 7.0400 * DIFF(RTP.3) * 50.00/44.72 RM7074
Ordinary Least Squares
QUARTERLY data for 111 periods from 1981Q2 to 2008Q4
Date: 23 OCT 2009
diff(rm7074)
$=\begin{aligned} 4.19384 \\ (0.25776)\end{aligned} * \operatorname{diff}($ rtp $)-5.90117 * \operatorname{diff}($ rtp $)[-1]$ - 27.0406 * diff(rtp)[-2] + 7.03995 * diff(rtp) [-3] + 0.02434

RM75O_P = RM75O_P. $1+(-12.1042 * \operatorname{DIFF}(R T P)-15.6142 * \operatorname{DIFF}($ RTP.1 $)+7.06185 * \operatorname{DIFF}($ RTP. 2$)-2.5738 * \operatorname{DIFF}($ RTP.3 $) * 50.00 / 44.72$ RM750
Ordinary Least Squares
QUARTERLY data for 111 periods from 1981Q2 to 2008Q4
Date: 23 OCT 2009
diff(rm750)
$=-12.1042$ * $\operatorname{diff}(r t p)-15.6142 * \operatorname{diff}(r t p)[-1]$ (0.80507) (0.98509)
+7.06185 * diff(rtp) [-2] - 2.57381 * diff(rtp) [-3] + 0.00860 (0.45088) (0.17042) (0.09395)

Sum Sq 98.0128 Std Err 0.9616 LHS Mean 0.0133
$\begin{array}{llllll}R & \text { Sq } 0.0212 & \text { R Bar Sq } & -0.0157 & \text { F }, 106 & 0.5749\end{array}$
D.W.(1) 2.6726 D.W. (4) 1.8788

FEMALES

RF1617_P = RF1617_P. $1+(-27.3243 * \operatorname{DIFF}($ RTP $)+13.4173 * \operatorname{DIFF}($ RTP.1 $)-50.4583 * \operatorname{DIFF}($ RTP.2 $)-0.3678 * \operatorname{DIFF}($ RTP. 3$)) * 50.00 / 44.72$ RF1617
Ordinary Least Squares
QUARTERLY data for 132 periods from 1976 to 2008Q4
Date: 23 OCT 2009
diff(rf1617)
$=-27.3243 * \operatorname{diff}(r t p)+13.4173 * \operatorname{diff}(r t p)[-1]$ (1.81297) (0.85773)

- 50.4583 * diff(rtp) [-2] - 0.36782 * diff(rtp) [-3] (3.23806) (0.02421)
+0.33050 * minw +0.19356 * $\operatorname{minw}[-1]+0.18090$ * $\operatorname{minw}[-2]$
- 0.68394 * minw[-3] - 0.13675
(0.67051) (0.30213)
$\begin{array}{lrllll}\text { Sum Sq } & 181.339 & \text { Std Err } & 1.2142 & \text { LHS Mean } & -0.0136 \\ R \text { Sq } & 0.1227 & \text { R Bar Sq } & 0.0656 & \mathrm{~F} & 8,123\end{array}$
R Sq 0.1227 R Bar Sq 0.0656 F 8,123 2.1501
D.W. (1) 2.9150 D.W. (4) 2.4862

RF1819_P $=$ RF1819_P. $1+(-42.6358 * \operatorname{DIFF}(R T P)-13.6261 * \operatorname{DIFF}($ RTP.1 $)+9.5650 * \operatorname{DIFF}($ RTP.2 $)-31.4798 * \operatorname{DIFF}($ RTP.3) $) * 50.00 / 44.72$ RF1819
Ordinary Least Squares
QUARTERLY data for 132 periods from 1976 Q1 to 2008Q4
Date: 23 OCT 2009
diff(rf1819)
$=-42.6358 * \operatorname{diff}(r t p)-13.6261 * \operatorname{diff}(r t p)[-1]$ (3.54124) (1.09043)

$+\underset{(0.38566)}{0.27394}$ * minw $-\underset{(0.97247)}{0.95221}$ * minw $[-1]+\underset{(0.96600)}{1.01588}$ * minw[-2] -0.32609 * minw[-3] - 0.05888 (0.40019) (0.16286)

Sum Sq 115.721 Std Err 0.9700 LHS Mean -0.0217
$\begin{array}{llllll}R ~ S q & 0.1706 & \text { R Bar Sq } 0.1167 & F & 8,123 & 3.1631\end{array}$
101
D.W. (1) 2.7048 D.W. (4) 2.3991

RF2024_P = RF2024_P. $1+(-16.9400$ * DIFF(RTP) -13.2669 * DIFF(RTP.1) - 7.8323 * DIFF(RTP.2) - 8.6887 * DIFF(RTP.3) *50.00/44.72 RF2024
Ordinary Least Squares
QUARTERLY data for 132 periods from 1976 Q1 to $2008 Q 4$
Date: 23 OCT 2009
diff(rf2024)
$=-16.9400 * \operatorname{diff}(r t p)-13.2669 * \operatorname{diff}(r t p)[-1]$
(3.09139) (2.28348)

- 7.83232 * diff(rtp) [-2] - 8.68870 * diff(rtp) [-3] - 0.02226
(1.35342) (1.54010) (0.56228)

Sum Sq 26.2142 Std Err 0.4543 LHS Mean -0.0275
R Sq 0.1917 R Bar Sq 0.1663 F 4,127 7.5310
D.W.(1) 2.5252 D.W.(4) 2.1988

RF2529_P = RF2529_P. 1 + (-15.5798 * DIFF(RTP) - 11.9097 * DIFF(RTP.1) - 9.8424 * DIFF(RTP.2) - 2.7555 * DIFF(RTP.3))*50.00/44.72 RF2529
Ordinary Least Squares
QUARTERLY data for 129 periods from 1976 Q4 to 2008Q4
Date: 23 OCT 2009
diff(rf2529)
$=-15.5798 * \operatorname{diff}(r t p)-11.9097 * \operatorname{diff}(r t p)[-1]$ (3.32423) (2.39607)

- 9.8424 * diff(rtp)[-2] - 2.75548 * diff(rtp) [-3] - 0.01837 (1.97999) (0.57663) (0.54398)
$\begin{array}{lrlrlrr}\text { Sum Sq } & 18.2145 & \text { Std Err } & 0.3833 & \text { LHS Mean } & -0.0172 \\ \text { R Sq } & 0.2094 & \text { R Bar Sq } & 0.1839 & \text { F } 4.124 & 8.2130\end{array}$
D.W. (1) 2.3764 D.W. (4) 2.0455

RF3034_P = RF3034_P. 1 + (-12.5396 * DIFF(RTP) - 1.6601 * DIFF(RTP.1) - 21.0289 * DIFF(RTP.2) + 0.0881 * DIFF(RTP.3) *50.00/44.72 RF3034
Ordinary Least Squares
QUARTERLY data for 129 periods from 197624 to 2008Q4
Date: 23 OCT 2009
diff(rf3034)
$=-12.5396$ * diff(rtp) - 1.66005 * diff(rtp)[-1] (2.58233) (0.32234)

- 21.0289 * diff(rtp) [-2] + 0.08813 * diff(rtp)[-3] - 0.01851 (4.08297) (0.01780) (0.52910)

| Sum Sq | 19.5533 | Std Err | 0.3971 | LHS Mean | -0.0179 |
| :--- | ---: | :--- | ---: | :--- | ---: | ---: |
| R Sq | 0.1929 | R Bar Sq | 0.1669 | F 4.124 | 7.4100 |

D. (1) 2.5217-D.W. (4) 2.0509

RF3539_P = RF3539_P. 1 + (-21.9314 * DIFF(RTP) - 3.0139 * DIFF(RTP.1) - 7.8723 * DIFF(RTP.2) - 6.4785 * DIFF(RTP.3))*50.00/44.72; RF3539
Ordinary Least Squares
QUARTERLY data for 129 periods from 1976 Q4 to 2008Q4
Date: 23 OCT 2009
diff(rf3539)

```
        = - 21.9314 * diff(rtp) - 3.01391 * diff(rtp)[-1]
                (5.04991) (0.65436)
```

```
        - 7.87232 * diff(rtp)[-2] - 6.47846 * diff(rtp)[-3] - 0.00217
        (1.70904) (1.46307) (0.06942)
\begin{tabular}{lrlllll} 
Sum Sq & 15.6401 & Std Err & 0.3551 & LHS Mean & -0.0005 \\
R Sq & 0.2453 & R Bar Sq & 0.2210 & F 4.124 & 10.0778 \\
D.W.( 1) & 2.3835 & D.W.( 4) & 1.7499 & & &
\end{tabular}
RF4044_P = RF4044_P.1 + (-7.7893 * DIFF(RTP) - 7.7152 * DIFF(RTP.1) - 5.7849 * DIFF(RTP.2) - 2.7298 * DIFF(RTP.3))*50.00/44.72
    RF4044
    Ordinary Least Squares
    QUARTERLY data for }129\mathrm{ periods from 1976Q4 to 2008Q4
    Date: 23 OCT 2009
    diff(rf4044)
        = - 7.78933 * diff(rtp) - 7.71518 * diff(rtp)[-1]
                (1.61580) (1.50905)
            - 5.78494 * diff(rtp)[-2] - 2.72977 * diff(rtp)[-3] - 0.00986
                (1.13141) (0.55538) (0.28389)
    Sum Sq 19.2707 Std Err 0.3942 LHS Mean -0.0095
    R Sq 0.0780 R Bar Sq 0.0483 F 4,124 2.6232
    D.W.( 1) 2.2897 D.W.( 4) 2.2106
RF4549_P = RF4549_P.1 + (-7.8747 * DIFF(RTP) -12.5212 * DIFF(RTP.1) + 3.56675 * DIFF(RTP.2) - 5.4812 * DIFF(RTP.3))*50.00/44.72
    RF4549
    Ordinary Least Squares
    QUARTERLY data for 129 periods from 1976Q4 to 2008Q4
    Date: 23 OCT 2009
    diff(rf4549)
        = - 7.87468 * diff(rtp) - 12.5212 * diff(rtp)[-1]
                (1.73362) (2.59919)
            + 3.56675 * diff(rtp)[-2] - 5.48119 * diff(rtp)[-3] - 0.00968
                (0.74033) (1.18351) (0.29587)
    Sum Sq 17.1092 Std Err 0.3715 LHS Mean -0.0093
    R Sq 0.1055 R Bar Sq 0.0767 F 4,124 3.6575
    D.W.( 1) 2.5032 D.W.( 4) 2.1339
RF5054_P = RF5054_P.1 + (-9.7818 * DIFF(RTP) - 3.1242 * DIFF(RTP.1) - 14.0327 * DIFF(RTP.2) - 4.0364 * DIFF(RTP.3))*50.00/44.72
    RF5054
    Ordinary Least Squares
    QUARTERLY data for 129 periods from 1976Q4 to 2008Q4
    Date: 23 OCT 2009
    diff(rf5054)
        = - 9.7818 * diff(rtp) - 3.12420 * diff(rtp)[-1]
            (2.25978) (0.68055)
            - 14.0327 * diff(rtp)[-2] - 4.03638 * diff(rtp) [-3] - 0.00195
                (3.05649) (0.91457) (0.06247)
    Sum Sq 15.5373 Std Err 0.3540 LHS Mean -0.0021
    R Sq 0.1556 R Bar Sq 0.1283 F 4,124 5.7111
    D.W.( 1) 2.3211 D.W.( 4) 1.9891
RF5559_P = RF5559_P.1 + (-2.4665 * DIFF(RTP) - 4.8191 * DIFF(RTP.1) - 11.4418 * DIFF(RTP.2) - 3.5854 * DIFF(RTP.3))*50.00/44.72
    RF5559
    Ordinary Least Squares
    QUARTERLY data for 129 periods from 1976Q4 to 2008Q4
```

Date: 23 OCT 2009
diff(rf5559)

RF6064_P = RF6064_P. $1+(-22.1139$ * DIFF(RTP) + 4.5539 * DIFF(RTP.1) - 6.2406 * DIFF(RTP.2) - 7.0337 * DIFF(RTP.3))*50.00/44.72 RF6064
Ordinary Least Squares
QUARTERLY data for 129 periods from 1976 Q4 to 2008Q4
Date: 23 OCT 2009
diff(rf6064)
$=-22.1139 * \operatorname{diff}(r t p)+4.55389 * \operatorname{diff}(r t p)[-1]$ (2.75662) (0.53526)

- 6.24055 * diff(rtp) [-2] - 7.03372 * diff(rtp) [-3] - 0.00247 (0.73345) (0.85995) (0.04266)
$\begin{array}{lrlrlr}\text { Sum Sq } & 53.3640 & \text { Std Err } & 0.6560 & \text { LHS Mean } & -0.0008 \\ \text { R Sq } & 0.0732 & \text { R Bar Sq } & 0.0433 & \text { F } 4.124 & 2.4497\end{array}$

| R | Sq 0.0732 | R Bar Sq 0.0433 | F | 4.124 | 2.4497 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

RF6569_P $=$ RF6569_P. $1+(9.2541 * \operatorname{DIFF}(\mathrm{RTP})+7.6281 * \operatorname{DIFF}($ RTP.1 $)-22.5230 * \operatorname{DIFF}(\mathrm{RTP} .2)+0.2738 * \operatorname{DIFF}(\mathrm{RTP} .3)) * 50.00 / 44.72$ RF6569
Ordinary Least Squares
QUARTERLY data for 129 periods from 1976 Q4 to 2008Q4
Date: 23 OCT 2009
diff(rf6569)
$=9.25410 * \operatorname{diff}(r t p)+7.62811 * \operatorname{diff}(r t p)[-1]$ (0.80440) (0.62521)

$\begin{array}{lrllll}\text { Sum Sq } & 109.749 & \text { Std Err } & 0.9408 & \text { LHS Mean } & -0.0199 \\ \text { R Sq } & 0.0329 & \text { R Bar Sq } & 0.0017 & \text { F } 4.124 & 1.0547\end{array}$
$\begin{array}{llllll}\text { D.W. (1) } & 3.0050 & \text { D.W. (4) } & 1.0241 & & \end{array}$
 RF7074
Ordinary Least Squares
QUARTERLY data for 111 periods from $1981 Q 2$ to 2008Q4
Date: 23 OCT 2009
diff(rf7074)
$=24.2237 * \operatorname{diff}(r t p)+8.33858 * \operatorname{diff}(r t p)[-1]$ (1.28864) (0.42077) - 13.5317 * $\operatorname{diff}(r t p)[-2]-8.18546$ * diff(rtp) $[-3]+0.01891$ (0.69102) (0.43349) (0.16535)

Sum Sq 153.213 Std Err 1.2023 LHS Mean 0.0075
$\begin{array}{lllllll}\text { R Sq } & 0.0218 & \text { R Bar Sq } & -0.0151 & \text { F } & 106 & 0.5903\end{array}$
D.W. (1) 2.6506 D.W. (4) 1.6645

```
RF75O_P = RF75O_P.1 + (-28.8294 * DIFF(RTP) + 55.5911 * DIFF(RTP.1) - 31.0676 * DIFF(RTP.2) - 15.8580 * DIFF(RTP.3))*50.00/44.72
    RF750
        Ordinary Least Squares
        QUARTERLY data for 111 periods from 1981Q2 to 2008Q4
        Date: 23 OCT 2009
    diff(rf75o)
        = - 28.8294 * diff(rtp) + 55.5911 * diff(rtp)[-1]
            (1.09028) (1.99419)
            - 31.0676 * diff(rtp)[-2] - 15.8580 * diff(rtp)[-3] + 0.03090
                (1.12786) (0.59703) (0.19206)
    Sum Sq 303.162 Std Err 1.6912 LHS Mean 0.0324
    R Sq 0.0508 R Bar Sq 0.0149 F 4,106 1.4170
    D.W.( 1) 2.6248 D.W.( 4) 1.5572
```


UNEMPLOYMENT RATES, AGE-GENDER ADJUSTED, PRELIMINARY

```
RUM_ASA_P = (RM1617_P * LM1617_BY + RM1819_P * LM1819_BY + RM2024_P * LM2024_BY + RM2529_P * LM2529_BY +
    RM3034_P * LM3034_BY + RM3539_P * LM3539_BY + RM4044_P * LM4044_BY + RM4549_P * LM4549_BY +
    RM5054_P * LM5054_BY + RM5559_P * LM5559_BY + RM6064_P * LM6064_BY + RM6569_P * LM6569_BY +
    RM7074_P * LM7074_BY + RM75O_P * LM75O_BY)/ LCM_BY
RUF_ASA_P = (RF1617_P * LF1617_BY + RF1819_P * LF1819_BY + RF2024_P * LF2024_BY + RF2529_P * LF2529_BY +
    RF3034_P * LF3034_BY + RF3539_P * LF3539_BY + RF4044_P * LF4044_BY + RF4549_P * LF4549_BY +
    RF5054_P * LF5054_BY + RF5559_P * LF5559_BY + RF6064_P * LF6064_BY + RF6569_P * LF6569_BY +
    RF7074_P * LF7074_BY + RF75O_P * LF75O_BY)/ LCF_BY
RU ASA P = (RUM ASA P * LCM BY + RUF ASA P * LCF BY) / LC BY
```


UNEMPLOYMENT RATES

MALES

```
RM1617= RM1617_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RM1819= RM1819_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RM2024= RM2024_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RM2529= RM2529_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RM3034= RM3034_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RM3539= RM3539_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RM4044= RM4044_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RM4549= RM4549_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RM5054= RM5054_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RM5559= RM5559_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RM6064= RM6064_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RM6569= RM6569_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RM7074= RM7074_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RM75O = RM75O_P * (1 + RU_ASA_ADJ / RU_ASA_P)
```


FEMALES

```
RF1617= RF1617_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RF1819= RF1819_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RF2024= RF2024_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RF2529= RF2529_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RF3034= RF3034_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RF3539 = RF3539_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RF4044= RF4044_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RF4549= RF4549_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RF5054= RF5054_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RF5559= RF5559_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RF6064= RF6064_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RF6569= RF6569_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RF7074= RF7074_P * (1 + RU_ASA_ADJ / RU_ASA_P)
RF75O = RF75O_P * (1 + RU_ASA_ADJ / RU_ASA_P)
```


UNEMPLOYMENT RATES, AGE-GENDER ADJUSTED

```
RUM_ASA = (RM1617 * LM1617_BY+ RM1819 * LM1819_BY + RM2024 * LM2024_BY + RM2529 * LM2529_BY +
    RM3034 * LM3034_BY + RM3539 * LM3539_BY + RM4044 * LM4044_BY + RM4549 * LM4549_BY +
    RM5054 * LM5054_BY + RM5559 * LM5559_BY + RM6064 * LM6064_BY + RM6569 * LM6569_BY +
    RM7074 * LM7074_BY + RM75O * LM75O_BY)/ LCM_BY
RUF_ASA = (RF1617 * LF1617_BY + RF1819 * LF1819_BY + RF2024 * LF2024_BY + RF2529 * LF2529_BY +
    RF3034 * LF3034_BY + RF3539 * LF3539_BY + RF4044 * LF4044_BY + RF4549 * LF4549_BY +
    RF5054 * LF5054_BY + RF5559 * LF5559_BY + RF6064 * LF6064_BY + RF6569 * LF6569_BY +
    RF7074 * LF7074_BY + RF75O * LF75O_BY)/ LCF_BY
RU_ASA = (RUM_ASA * LCM_BY + RUF_ASA * LCF_BY) / LC_BY
```


UNEMPLOYMENT RATES, FULL EMPLOYMENT DIFFERENTIALS

MALES

DRM1617_FE $=(-36.2076 *(1-\mathrm{RTP})-14.2816 *(1-\mathrm{RTP} .1)-26.6756 *(1-\mathrm{RTP} .2)-16.9202 *(1-\mathrm{RTP} .3)) * 50.00 / 44.72$ DRM1819_FE $=(-48.4227 *(1-$ RTP $)-25.8766 *(1-$ RTP.1 $)-21.7466 *(1-$ RTP.2 $)+1.1551 *(1-$ RTP.3 $)) * 50.00 / 44.72$ DRM2024_FE $=(-51.6518 *(1-$ RTP $)-16.6465 *(1-R T P .1)-13.1350 *(1-R T P .2)-10.9309 *(1-$ RTP.3 $) * 50.00 / 44.72$ DRM2529_FE $=(-37.9533 \text { * }(1-\mathrm{RTP})-17.3941 *(1-\mathrm{RTP} .1)-14.9170 *(1-\mathrm{RTP} .2)-7.0513 *(1-\mathrm{RTP} .3))^{*} 50.00 / 44.72$ DRM3034_FE $=(-23.6417 *(1-R T P)-14.1284 *(1-R T P .1)-7.5008 *(1-R T P .2)-9.7232 *(1-R T P .3)) * 50.00 / 44.72$ DRM3539_FE $=(-27.6828 *(1-R T P)-5.4850 *(1-R T P .1)-10.8974 *(1-R T P .2)-9.8932 *(1-R T P .3)) * 50.00 / 44.72$ DRM4044_FE $=(-14.6558 *(1-R T P)-14.9735 *(1-$ RTP.1 $)-8.2594 *(1-$ RTP.2 $)-5.5023 *(1-$ RTP.3 $) * 50.00 / 44.72$ DRM4549_FE $=(-20.7806 *(1-\mathrm{RTP})-11.5121 *(1-\mathrm{RTP} .1)-9.9409 *(1-\mathrm{RTP} .2)+1.5480 *(1-\mathrm{RTP} .3)) * 50.00 / 44.72$ DRM5054_FE $=(-19.3341 *(1-$ RTP $)-9.5336 *(1-$ RTP.1 $)-8.8784 *(1-$ RTP.2 $)-7.6218 *(1-$ RTP.3 $)) * 50.00 / 44.72$ DRM5559_FE $=(-25.9031 *(1-$ RTP $)-11.4442 *(1-R T P .1)-4.5421 *(1-R T P .2)+0.55815 *(1-R T P .3)) * 50.00 / 44.72$ DRM6064_FE $=(1.3133 *(1-$ RTP $)-12.9625 *(1-$ RTP.1 $)-2.4816 *(1-$ RTP. 2$)-14.4797 *(1-$ RTP.3 $) * 50.00 / 44.72$ DRM6569_FE $=(-19.5151 *(1-\mathrm{RTP})+4.9785 *(1-\mathrm{RTP} .1)-13.3449 *(1-\mathrm{RTP} .2)+2.4706 *(1-\mathrm{RTP} .3)) * 50.00 / 44.72$ DRM7074_FE $=4.1938 *(1-\mathrm{RTP})-5.9012 *(1-$ RTP.1 $)-27.0406 *(1-\mathrm{RTP} .2)+7.0400 *(1-\mathrm{RTP} .3)) * 50.00 / 44.72$ DRM75O_FE $=(-12.1042 *(1-\mathrm{RTP})-15.6142 *(1-\mathrm{RTP} .1)+7.06185 *(1-\mathrm{RTP} .2)-2.5738 *(1-\mathrm{RTP} .3) * 50.00 / 44.72$

FEMALES

DRF1617_FE $=(-27.3243 *(1-\mathrm{RTP})+13.4173 *(1-\mathrm{RTP} .1)-50.4583 *(1-\mathrm{RTP} .2)-0.3678 *(1-\mathrm{RTP} .3)) * 50.00 / 44.72$ DRF1819_FE $=(-42.6358 *(1-\mathrm{RTP})-13.6261 *(1-\mathrm{RTP} .1)+9.5650 *(1-\mathrm{RTP} .2)-31.4798 *(1-\mathrm{RTP} .3)) * 50.00 / 44.72$ DRF2024_FE $=(-16.9400 *(1-$ RTP $)-13.2669 *(1-$ RTP. 1$)-7.8323 *(1-$ RTP. 2$)-8.6887 *(1-$ RTP.3 $)) * 50.00 / 44.72$ DRF2529_FE $=(-15.5798 *(1-\mathrm{RTP})-11.9097 *(1-\mathrm{RTP} .1)-9.8424 *(1-\mathrm{RTP} .2)-2.7555 *(1-\mathrm{RTP} .3)) * 50.00 / 44.72$ DRF3034_FE $=(-12.5396 *(1-$ RTP $)-1.6601 *(1-$ RTP. $)-21.0289 *(1-$ RTP. $)+0.0881 *(1-$ RTP.3 $) * 50.00 / 44.72$

```
DRF3539_FE \(=(-21.9314 *(1-\mathrm{RTP})-3.0139 *(1-\mathrm{RTP} .1)-7.8723 *(1-\mathrm{RTP} .2)-6.4785 *(1-\mathrm{RTP} .3)) * 50.00 / 44.72\)
DRF4044_FE \(=(-7.7893 *(1-\) RTP \()-7.7152 *(1-\) RTP.1 \()-5.7849 *(1-R T P .2)-2.7298 *(1-R T P .3)) * 50.00 / 44.72\)
DRF4549_FE \(=(-7.8747 *(1-\) RTP \()-12.5212 *(1-R T P .1)+3.56675 *(1-R T P .2)-5.4812 *(1-R T P .3) * 50.00 / 44.72\)
DRF5054_FE \(=(-9.7818 *(1-\) RTP \()-3.1242 *(1-\) RTP.1 \()-14.0327 *(1-\) RTP.2 \()-4.0364 *(1-\) RTP.3 \() * 50.00 / 44.72\)
DRF5559_FE \(=(-2.4665 *(1-\) RTP \()-4.8191 *(1-\) RTP. 1\()-11.4418 *(1-\) RTP. 2\()-3.5854 *(1-\) RTP. 3\()) * 50.00 / 44.72\)
DRF6064_FE \(=(-22.1139 *(1-\mathrm{RTP})+4.5539 *(1-\mathrm{RTP} .1)-6.2406 *(1-\mathrm{RTP} .2)-7.0337 *(1-\mathrm{RTP} .3)) * 50.00 / 44.72\)
DRF6569_FE \(=(9.2541 *(1-\) RTP \()+7.6281 *(1-\) RTP.1 \()-22.5230 *(1-\) RTP.2 \()+0.2738 *(1-\) RTP.3 \() * * 50.00 / 44.72\)
DRF7074_FE \(=(24.2237 *(1-\) RTP \()+8.3386 *(1-\) RTP.1 \()-13.5317 *(1-\) RTP.2 \()-8.1855 *(1-\) RTP.3 \()\) *50.00/44.72
DRF75O_FE \(=(-28.8294 *(1-\) RTP \()+55.5911 *(1-\) RTP. 1\()-31.0676 *(1-\) RTP. 2\()-15.8580 *(1-\) RTP.3 \() * 50.00 / 44.72\)
```

UNEMPLOYMENT RATES, FULL EMPLOYMENT DIFFERENTIALS

TOTALS

MALES

RM1617_FE = RM1617 + DRM1617_FE
RM1819_FE $=$ RM1819 + DRM1819_FE
RM2024_FE = RM2024 + DRM2024_FE
RM2529_FE = RM2529 + DRM2529_FE
RM3034_FE = RM3034 + DRM3034_FE
RM3539_FE = RM3539 + DRM3539_FE
RM4044_FE = RM4044 + DRM4044_FE
RM4549_FE = RM4549 + DRM4549_FE
RM5054_FE = RM5054 + DRM5054_FE
RM5559_FE = RM5559 + DRM5559_FE
RM6064_FE = RM6064 + DRM6064_FE
RM6569_FE = RM6569 + DRM6569_FE
RM7074_FE $=$ RM7074 + DRM7074_FE
RM75O_FE = RM750 + DRM75O_FE
RF1617_FE $=$ RF1617 + DRF1617_FE
RF1819_FE $=$ RF1819 + DRF1819_FE
RF2024_FE $=$ RF2024 + DRF2024_FE
RF2529_FE $=$ RF2529 + DRF2529_FE
RF3034_FE $=$ RF3034 + DRF3034_FE
RF3539_FE $=$ RF3539 + DRF3539_FE
RF4044_FE $=$ RF4044 + DRF4044_FE
RF4549_FE $=$ RF4549 + DRF4549_FE
RF5054_FE $=$ RF5054 + DRF5054_FE
RF5559_FE $=$ RF5559 + DRF5559_FE
RF6064_FE $=$ RF6064 + DRF6064_FE
RF6569_FE $=$ RF6569 + DRF6569_FE
RF7074_FE $=$ RF7074 + DRF7074_FE
RF75O_FE $=$ RF75O + DRF75O_FE

LABOR FORCE PARTICIPATION RATES (LFPR)

(NOTE: "RNLM" OR "RNLF" IN SOME EQUATIONS BELOW REFERS TO "NOT IN THE LABOR FORCE RATE" FOR MALES OR FEMALES. THE LETTER FOLLOWING REFERS TO THE REASON FOR NOT BEING IN THE LABOR FORCE.)

MALE LFPR EQUATIONS

AGE 16 TO 19

```
RNLM1617_S+RNLM1617_O2+RNLM1617_H = - 0.78720 + 0.01330 * YEAR + 0.00301 * (RM1617 + RM1617.1)/2
    RNLM1617 S
    ANNUAL dāta for 15 periods from 1994 to 2008
    Date: }7\mathrm{ NOV 2009
    rnlm1617_s+rnlm1617_o2+rnlm1617_h-(0.00301*(rm1617+rm1617.1)/2)
        = 0.01330* year - 0.78720
            (17.2413) (10.0980)
\begin{tabular}{llllllr} 
Sum Sq & 0.0022 & Std Err & 0.0129 & LHS Mean & 0.5556 \\
R Sq & 0.9581 & R Bar Sq & 0.9549 & F & 1,13 & 297.261 \\
D.W. ( 1) & 0.8599 & D.W. ( 2) & 1.9420 & & &
\end{tabular}
```

PM1617 $=0.98298-$ B2_2064DI * B1_M1617D * RM1617DI - $(-0.78720+0.01330$ * TR_PM1617 + 0.00158 * RM1617 + 0.00180 * RM1617.1 + 0.00115 * RM1617.2 + 0.00014 * RM1617.3-0.00072 * RM1617.4-0.00094 * RM1617.5)

PM1617_AADJ
Ordinā̄y Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 8 NOV 2009
pm1617_aadj+b2_2064di*b1_m1617d*rm1617di+rnlm1617_s+rnlm1617_h+ rnlm1617_o2
$=0.98298$
(1624.33)

| Sum Sq | 0.0001 | Std Err | 0.0023 | LHS Mean | 0.9830 |
| :--- | ---: | :--- | ---: | :--- | ---: | ---: |
| R Sq | -0.0000 | R Bar Sq | -0.0000 | F 0,14 | NC |

D.W. (1) 0.8018 D.W. (2) 0.9743

RNLM1819_S+RNLM1819_O2+RNLM1819_H $=-0.50476+0.00764 *$ YEAR $+0.00626 *($ RM1819 + RM1819.1 $) / 2$
RNLM1819 S
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 7 NOV 2009
rnlm1819_s+rnlm1819_o2+rnlm1819_h
$=0.00626 *(r m 1819+r m 1819.1) / 2+0.00764 *$ year -0.50476 (4.95266) (16.0633) (10.0266)

Sum Sq 0.0008 Std Err 0.0079 LHS Mean 0.3660
R Sq 0.9615 R Bar Sq $0.9551 \quad \mathrm{~F} \quad 2,12149.923$
D.W. (1) 2.7528 D.W. (2) 1.5413

PM1819 $=0.97979-$ B2_2064DI * B1_M1819D * RM1819DI - $-0.50476+0.00764$ * TR_PM1819 + 0.00626 * MOVAVG(5,RM1819)) PM1819_AADJ
Ordinā̄y Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 8 NOV 2009
pm1819_aadj+b2_2064di*b1_m1819d*rm1819di+rnlm1819_s+rnlm1819_h+
rnlm1819_o2
$=0.97979$
(1394.51)

Sum Sq	0.0001	Std Err	0.0027	LHS Mean	0.9798	
R Sq	0.0000	R Bar Sq	0.0000	F 0,14	NC	
D.W. (1)	0.9376	D.W. (2)	1.8283			

AGE 20 TO 54

NEVER MARRIED

```
RNLM2024NM_S
    Ordinary Least Squares
    ANNUAL data for 15 periods from 1994 to 2008
    Date: }7\mathrm{ NOV 2009
    rnlm2024nm_s
        = 0.00225 * year - 0.08557
        (9.38645) (3.52616)
Sum Sq 0.0002 Std Err 0.0040 LHS Mean 0.1420
R Sq 0.8714 R Bar Sq 0.8615 F 1, 13 88.1054
D.W.( 1) 1.8852 D.W.( 2) 2.0274
```

PM2024NM_P $=1.04005-0.00523-0.00225 *$ TR_PM2024-0.00063 * RM2024-0.00077 * RM2024.1-0.00059 * RM2024.2-0.00027 * RM2024.3 + 0.00005 * RM2024.4 + 0.00020 * RM2024.5 - B2_2064DI * B1_M2024D * RM2024DI

PLM2024NM
 Ordinary Least Squares

ANNUAL data for 15 periods from 1994 to 2008
Date: 7 NOV 2009
plm2024nm+b2 2064di*b1 m2024d*rm2024di+0.00225*year + (0.00201*(rm2024
+rm2024.1)/2)
$=-0.00523 * \operatorname{dum102108}+1.04005$
(2.84172) (827.809)

Sum Sq	0.0002	Std Err	0.0036	LHS Mean	1.0376	
R Sq	0.3832	R Bar Sq	0.3357	F	1,13	8.0754

R Sq 0.3832 R Bar Sq 0.3357 F 1, 13 8.0754
D.W. (1) 2.6188 D.W.(2) 1.4507

RNLM2529NM_S
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 7 NOV 2009
rnlm2529nm_s

$=$| 0.00070 |
| :---: |
| (3.84846) |$*$ year -0.02955

Sum Sq	0.0001	Std Err	0.0030	LHS Mean	0.0413	
R Sq	0.5326	R Bar Sq	0.4966	F 1, 13	14.8107	
D.W.(1)	1.9279	D.W.(2)	1.5364			

PM2529NM_P = 0.97919-0.00809-0.00070 * TR_PM2529-0.00028 * RM2529-0.00044 * RM2529.1-0.00050 * RM2529.2-0.00047 * RM2529.3-0.00037 * RM2529.4-0.00021 * RM2529.5-B2_2064DI * B1_M2534D * RM2529DI

PLM2529NM
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 7 NOV 2009

```
plm2529nm+b2_2064di*b1_m2534d*rm2529di+0.00070*year+(0.00185*(rm2529
+rm2529.1)/2)
    = - 0.00809 * dum102108 + 0.97919
        (3.46642) (614.240)
\begin{tabular}{llllllr} 
Sum Sq & 0.0003 & Std Err & 0.0045 & LHS Mean & 0.9754 \\
R Sq & 0.4803 & R Bar Sq & 0.4404 & F & 1,13 & 12.0161
\end{tabular}
D.W.( 1) 2.0763 D.W.( 2) 1.7656
```

PM3034NM_P $=0.90427-0.00046$ * RM3034-0.00061 * RM3034.1-0.00054 * RM3034.2-0.00036 * RM3034.3-0.00014 * RM3034.4 + 0.00001 * RM3034.5-B2_2064DI * B1_M2534D * RM3034DI
PLM3034NM
ANNUAL data for 15 periods from 1994 to 2008
Date: 7 NOV 2009
plm3034nm+b2_2064di*b1_m2534d*rm3034di+(0.00210*(rm3034+rm3034.1)/2)
$=0.90427$
(775.187)

| Sum Sq | 0.0003 | Std Err | 0.0045 | LHS Mean | 0.9043 |
| :--- | ---: | :--- | :--- | :--- | :--- | ---: |
| R Sq | 0.0000 | R Bar Sq | 0.0000 | F 0,14 | NC |

D.W. (1) 1.1558 D.W.(2) 1.7778

PM3539NM_P = 0.86825-0.00004 * RM3539-0.00010 * RM3539.1-0.00016 * RM3539.2-0.00021 * RM3539.3-0.00021 * RM3539.40.00015 * RM3539.5-B2_2064DI * B1_M3544D * RM3539DI
PLM3539NM

ANNUAL data for 15 periods from 1994 to 2008
Date: 7 NOV 2009
plm3539nm+b2_2064di*b1_m3544d*rm3539di+(0.00087*(rm3539+rm3539.1)/2)
$=0.86825$
(332.008)

Sum Sq	0.0014	Std Err	0.0101	LHS Mean	0.8683	
R Sq	0.0000	R Bar Sq	0.0000	F 0,14	NC	
D.W. (1)	0.6401	D.W. (2)	0.6952			

PM4044NM_P $=0.83977-0.00057 *$ RM4044-0.00066 * RM4044.1-0.00044 * RM4044.2-0.00009 * RM4044.3 + 0.00022 * RM4044.4 + 0.00031 * RM4044.5-B2_2064DI * B1_M3544D * RM4044DI

$$
\begin{aligned}
& \text { PLM4044NM } \\
& \text { ANNUAL data for } 15 \\
& \text { Date: } 7 \text { NOV } 2009 \\
& \text { plm4044nm+b2_2064c } \\
& =\begin{array}{c}
0.83977 \\
(335.553)
\end{array}
\end{aligned}
$$

$$
\text { ANNUAL data for } 15 \text { periods from } 1994 \text { to } 2008
$$

plm4044nm+b2_2064di*b1_m3544d*rm4044di+(0.00123*(rm4044+rm4044.1)/2)

Sum Sq	0.0013	Std Err	0.0097	LHS Mean	0.8398	
R Sq	0.0000	R Bar Sq	0.0000	F 0,14	NC	
D.W. (1)	1.4785	D.W.(2)	1.6384			

PM4549NM_P $=0.81116-0.00002$ * RM4549-0.00016 * RM4549.1-0.00034 * RM4549.2-0.00049 * RM4549.3-0.00054 * RM4549.4 0.00040 * RM4549.5-B2_2064DI * B1_M4554D * RM4549DI PLM4549NM
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008

Date: 7 NOV 2009

```
plm4549nm+b2_2064di*b1_m4554d*rm4549di+(0.00195*(rm4549+rm4549.1)/2)
    = 0.81116
        (257.658)
\begin{tabular}{llllllr} 
Sum Sq & 0.0021 & Std Err & 0.0122 & LHS Mean & 0.8112 \\
R Sq & 0.0000 & R Bar Sq & 0.0000 & F 0, 14 & NC
\end{tabular}
D.W.( 1) 1.5984 D.W.( 2) 2.0633
```

```
PM5054NM_P = 0.77540 + 0.00112 * RM5054 + 0.00103 * RM5054.1 + 0.00023 * RM5054.2 - 0.00078 * RM5054.3 - 0.00149 * RM5054.4 
0.00139 * RM5054.5 - B2_2064DI * B1_M4554D * RM5054DI
    PLM5054NM
        Ordinary Least Squares
        ANNUAL data for 15 periods from 1994 to 2008
        Date: }7\mathrm{ NOV 2009
    plm5054nm+b2_2064di*b1_m4554d*rm5054di+(0.00128*(rm5054+rm5054.1)/2)
        = 0.77540
        (166.942)
    Sum Sq 0.0045 Std Err 0.0180 LHS Mean 0.7754
    R Sq -0.0000 R Bar Sq -0.0000 F 0, 14 NC
    D.W.( 1) 1.1198 D.W.( 2) 2.1480
```

AGE 20 TO 54
MARRIED, SPOUSE PRESENT

```
RNLM2024MS S
    Ordinary Least Squares
    ANNUAL data for 15 periods from 1994 to 2008
    Date: }7\mathrm{ NOV 2009
    rnlm2024ms_s
        = 0.00069 * year - 0.04629
            (3.01675) (2.00334)
\begin{tabular}{lllllll} 
Sum Sq & 0.0002 & Std Err & 0.0038 & LHS Mean & 0.0234 \\
R Sq & 0.4118 & R Bar Sq & 0.3665 & F 1, 13 & 9.1008
\end{tabular}
    D.W.( 1) 2.3964 D.W.( 2) 1.7089
```

PM2024MS_P = 1.03184-0.00733-0.00069 * TR_PM2024-0.00063 * RM2024-0.00077 * RM2024.1-0.00059 * RM2024.2-0.00027 * RM2024.3 + 0.00005 * RM2024.4 + 0.00020 * RM2024.5 - B2_2064DI * B1_M2024D * RM2024DI

> PLM2024MS

Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 7 NOV 2009
plm2024ms+b2_2064di*b1_m2024d*rm2024di+0.00069*year+(0.00201*(rm2024
+rm2024.1)/2)
$=-0.00733 *$ dum102108 +1.03184 (3.07932) (634.159)

Sum Sq 0.0003 Std Err 0.0046 LHS Mean 1.0284
$\begin{array}{lllllll}\text { R Sq } 0.4218 & \text { R Bar Sq } 0.3773 & F & 1,13 & 9.4822\end{array}$
D.W.(1) 1.5789 D.W.(2) 2.1030

```
RNLM2529MS S
Ordinary Lēast Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: }7\mathrm{ NOV 2009
rnlm2529ms_s
    =0.00025* year - 0.01064
        (1.99841) (0.85842)
\begin{tabular}{lllllll} 
Sum Sq & 0.0001 & Std Err & 0.0021 & LHS Mean & 0.0141 \\
R Sq & 0.2350 & R Bar Sq & 0.1762 & F & 1,13 & 3.9937 \\
D.W.( 1) & 2.3603 & D.W.( 2) & 1.0595 & & &
\end{tabular}
```

PM2529MS_P = 1.00110-0.00498-0.00025 * TR_PM2529-0.00028 * RM2529-0.00044 * RM2529.1-0.00050 * RM2529.2-0.00047 * RM2529.3-0.00037 * RM2529.4-0.00021 * RM2529.5-B2_2064DI * B1_M2534D * RM2529DI

```
PLM2529MS
    Ordinary Least Squares
```

 ANNUAL data for 15 periods from 1994 to 2008
 Date: 7 NOV 2009
 plm2529ms+b2_2064di*b1_m2534d*rm2529di+0.00025*year+(0.00185*(rm2529
 +rm2529.1)/2)
 \(=-0.00498 *\) dum102108 +1.00110
 (2.59558) (764.261)
 Sum Sq 0.0002 Std Err 0.0037 LHS Mean 0.9988

D.W. (1) 2.3980 D.W. (2) 1.9950
PM3034MS_P $=0.97120+0.16457$ * 1/(TR_PM3034-85) - 0.00046 * RM3034-0.00061 * RM3034.1-0.00054 * RM3034.2-0.00036 *
RM3034.3-0.00014 * RM3034.4 + 0.00001 * RM3034.5-B2_2064DI * B1_M2534D * RM3034DI
PLM3034MS
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 7 NOV 2009
plm3034ms+b2_2064di*b1_m2534d*rm3034di+(0.00210*(rm3034+rm3034.1)/2)
$=0.16457 * 1 /($ year -85$)+0.97120$
(5.86039) (489.209)

| Sum Sq | 0.0001 | Std Err | 0.0022 | LHS Mean | 0.9824 |
| :--- | ---: | :--- | :--- | :--- | :--- | ---: |
| R Sq | 0.7254 | R Bar Sq | 0.7043 | F 1,13 | 34.3441 |

 D.W. (1) 1.8302 D.W. (2) 2.8385) 34.3441
 PM3539MS_P $=0.98068-0.00004 *$ RM3539-0.00010 * RM3539.1-0.00016 * RM3539.2-0.00021 * RM3539.3-0.00021 * RM3539.40.00015 * RM3539.5-B2_2064DI * B1_M3544D * RM3539DI

PLM3539MS

Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 7 NOV 2009

```
plm3539ms+b2_2064di*b1_m3544d*rm3539di+(0.00087*(rm3539+rm3539.1)/2)
    = 0.98068
    (929.829)
\begin{tabular}{lrlrlr} 
Sum Sq & 0.0002 & Std Err & 0.0041 & LHS Mean & 0.9807
\end{tabular}
R Sq -0.0000 R Bar Sq -0.0000 F 0, 14 NC
```

PM4044MS_P $=0.98250-0.00057$ * RM4044-0.00066 * RM4044.1-0.00044 * RM4044.2-0.00009 * RM4044.3 + 0.00022 * RM4044.4 + 0.00031 * RM4044.5-B2_2064DI * B1_M3544D * RM4044DI

PLM4044MS
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 7 NOV 2009
plm4044ms+b2_2064di*b1_m3544d*rm4044di+(0.00123*(rm4044+rm4044.1)/2)
$=0.98250$
(1655.38)

| Sum Sq $\quad 0.0001$ | Std Err $0.0023 \quad$ LHS Mean 0.9825 |
| :--- | :--- | :--- | :--- |

R Sq 0.0000 R Bar Sq 0.0000 F 0, 14 NC
D.W. (1) 0.8575 D.W. (2) 1.5758

PM4549MS_P $=0.98115-0.00002$ * RM4549-0.00016 * RM4549.1-0.00034 * RM4549.2-0.00049 * RM4549.3-0.00054 * RM4549.40.00040 * RM4549.5-B2_2064DI * B1_M4554D * RM4549DI

PLM4549MS
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 7 NOV 2009
plm4549ms+b2_2064di*b1_m4554d*rm4549di+(0.00195*(rm4549+rm4549.1)/2)
$=0.98115$
(1530.80)

| Sum Sq | 0.0001 | Std Err | 0.0025 | LHS Mean | 0.9811 |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| R Sq | 0.0000 | R Bar Sq | 0.0000 | F 0,14 | NC |

PM5054MS_P $=0.94484+0.00112 *$ RM5054 + 0.00103 * RM5054.1 + 0.00023 * RM5054.2 - 0.00078 * RM5054.3 - 0.00149 * RM5054.4 0.00139 * RM5054.5 + 0.09796 * (RF5054CU6+RF5054C6O) - B2_2064DI * B1_M4554D * RM5054DI PLM5054MS
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 7 NOV 2009
plm5054ms+b2_2064di*b1_m4554d*rm5054di+(0.00128*(rm5054+rm5054.1)/2)
$=0.09796 * r f 5054 c u 6+r f 5054 c 617+0.94484$ (2.44491) (136.906)

Sum Sq 0.0002 Std Err 0.0039 LHS Mean 0.9615
$\begin{array}{lllllll}R & \text { Sq } 0.3150 ~ R ~ B a r ~ S q ~ & 0.2623 & F & 13 & 5.9776\end{array}$
D.W.(1) 1.5461 D.W. (2) 2.4174

113

AGE 20 TO 54

MARRIED, SPOUSE ABSENT

```
RNLM2024MA_S
    Ordinary Least Squares
    ANNUAL data for 15 periods from 1994 to 2008
    Date: }7\mathrm{ NOV 2009
    rnlm2024ma_s
        = 0.00232 * year - 0.19022
            (3.44223) (2.78908)
    Sum Sq 0.0017 Std Err 0.0113 LHS Mean 0.0443
    R Sq 0.4768 R Bar Sq 0.4366 F 1, 13 11.8489
    D.W.( 1) 2.1390 D.W.( 2) 2.0340
```

PM2024MA_P $=1.14087-0.01412-0.00232 *$ TR_PM2024-0.00063 * RM2024-0.00077 * RM2024.1-0.00059 * RM2024.2-0.00027 *
RM2024.3 + 0.00005 * RM2024.4 + 0.00020 * RM2024.5 - B2_2064DI * B1_M2024D * RM2024DI
PLM2024MA
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 7 NOV 2009
plm2024ma+b2_2064di*b1_m2024d*rm2024di+0.00232*year+(0.00201*(rm2024
+rm2024.1)/2)
$=-0.01412$ * dum102108 + 1.14087
(1.46970) (173.836)

Sum Sq	0.0045	Std Err	0.0186	LHS Mean	1.1343	
R Sq	0.1425	R Bar Sq	0.0765	F	1,13	2.1600

 D.W.(1) 1.4227 D.W.(2) 1.9550
 RNLM2529MA_S
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 7 NOV 2009
rnlm2529ma_s
$=0.00051 \star$ year -0.03080
(1.65087) (0.98569)
Sum Sq 0.0003 Std Err 0.0052 LHS Mean 0.0207
$\begin{array}{lllllll}R & \text { Sq } 0.1733 & R & \text { Bar Sq } 0.1097 & F & 13 & 2.7254\end{array}$
D.W.(1) 1.5349 D.W.(2) 2.1177

PM2529MA P $=0.98602-0.00788-0.00051$ * TR PM2529-0.00028 * RM2529-0.00044 * RM2529.1-0.00050 * RM2529.2-0.00047 * RM2529.3-0.00037 * RM2529.4-0.00021 * RM2529.5- B2_2064DI * B1_M2534D * RM2529DI PLM2529MA
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 7 NOV 2009

```
plm2529ma+b2_2064di*b1_m2534d*rm2529di+0.00051*year+(0.00185*(rm2529
+rm2529.1)/2)
    = - 0.00788 * dum102108 + 0.98602
        (1.97520) (361.786)
Sum Sq 0.0008 Std Err 0.0077 LHS Mean 0.9823
R Sq 0.2308 R Bar Sq 0.1717 F 1, 13 3.9014
D.W.( 1) 1.4431 D.W.( 2) 2.2441
```

PM3034MA_P $=0.93933-0.00046 *$ RM3034-0.00061 * RM3034.1-0.00054 * RM3034.2-0.00036 * RM3034.3-0.00014 * RM3034.4 + 0.00001 * RM3034.5-B2_2064DI * B1_M2534D * RM3034DI

```
PLM3034MA
    Ordinary Least Squares
```

 ANNUAL data for 15 periods from 1994 to 2008
 Date: 7 NOV 2009
 plm3034ma+b2_2064di*b1_m2534d*rm3034di+(0.00210*(rm3034+rm3034.1)/2)
 \(=0.93933\)
 (449.774)
 | Sum Sq | 0.0009 | Std Err | 0.0081 | LHS Mean | 0.9393 |
| :--- | ---: | :--- | ---: | :--- | ---: | ---: |
| R Sq | -0.0000 | R Bar Sq | -0.0000 | F 0,14 | NC |

 D.W. (1) 0.9470 D.W. (2) 1.2630
 PM3539MA_P $=0.92354-0.00004$ * RM3539-0.00010 * RM3539.1-0.00016 * RM3539.2-0.00021 * RM3539.3-0.00021 * RM3539.40.00015 * RM3539.5-B2_2064DI * B1_M3544D * RM3539DI

$$
\begin{aligned}
& \text { PLM3539MA } \\
& \text { Ordinary Least Squares }
\end{aligned}
$$

$$
\text { ANNUAL data for } 15 \text { periods from } 1994 \text { to } 2008
$$

$$
\text { Date: } 7 \text { NOV } 2009
$$

plm3539ma+b2_2064di*b1_m3544d*rm3539di+(0.00087*(rm3539+rm3539.1)/2)

$$
=0.92354
$$

$$
(538.814)
$$

Sum Sq	0.0006	Std Err	0.0066	LHS Mean	0.9235	
R Sq	-0.0000	R Bar Sq	-0.0000	F 0,14	NC	
D.W. (1)	1.6678	D.W. (2)	1.7279			

PM4044MA_P = 0.91512-0.00057 * RM4044-0.00066 * RM4044.1-0.00044 * RM4044.2-0.00009 * RM4044.3 + 0.00022 * RM4044.4 + 0.00031 * RM4044.5-B2_2064DI * B1_M3544D * RM4044DI

PLM4044MA

Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 7 NOV 2009
plm4044ma+b2_2064di*b1_m3544d*rm4044di+(0.00123*(rm4044+rm4044.1)/2)
$=0.91512$
(721.479)

| Sum Sq | 0.0003 | Std Err | 0.0049 | LHS Mean | 0.9151 |
| :--- | ---: | :--- | ---: | :--- | ---: | ---: |
| R Sq | -0.0000 | R Bar Sq | -0.0000 | F 0,14 | NC |

D.W. (1) 2.3251 D.W. (2) 2.1801

115

```
PM4549MA_P = 0.89473-0.00002 * RM4549-0.00016 * RM4549.1-0.00034 * RM4549.2-0.00049 * RM4549.3-0.00054 * RM4549.4 -
0.00040 * RM4549.5 - B2_2064DI * B1_M4554D * RM4549DI
    PLM4549MA 
    ANNUAL data for 15 periods from 1994 to 2008
    Date: }7\mathrm{ NOV 2009
    plm4549ma+b2_2064di*b1_m4554d*rm4549di+(0.00195*(rm4549+rm4549.1)/2)
        = 0.89473
            (655.751)
        Sum Sq 0.0004 Std Err 0.0053 LHS Mean 0.8947
        R Sq -0.0000 R Bar Sq -0.0000 F 0, 14 NC
        D.W.( 1) 1.5173 D.W.( 2) 1.7125
```

PM5054MA_P $=0.84912+0.00112$ * RM5054 + 0.00103 * RM5054.1 + 0.00023 * RM5054.2-0.00078 * RM5054.3-0.00149 * RM5054.4 -
0.00139 * RM5054.5-B2_2064DI * B1_M4554D * RM5054DI
PLM5054MA
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 7 NOV 2009
plm5054ma+b2_2064di*b1_m4554d*rm5054di+(0.00128*(rm5054+rm5054.1)/2)
$=0.84912$
(202.943)
Sum Sq 0.0037 Std Err 0.0162 LHS Mean 0.8491
R Sq -0.0000 R Bar Sq -0.0000 F 0, 14 NC
D.W.(1) 0.8062 D.W. (2) 1.4293

AGE 20 TO 54

LABOR FORCE PARTICIPATION RATES (PRELIMINARY)

```
PM2024_P = (PM2024NM_P * NM2024NM + PM2024MS_P * NM2024MS + PM2024MA_P * NM2024MA) / NM2024
PM2529_P = (PM2529NM_P * NM2529NM + PM2529MS_P * NM2529MS + PM2529MA_P * NM2529MA) / NM2529
PM3034_P = (PM3034NM_P * NM3034NM + PM3034MS_P * NM3034MS + PM3034MA_P * NM3034MA) / NM3034
PM3539_P = (PM3539NM_P * NM3539NM + PM3539MS_P * NM3539MS + PM3539MA_P * NM3539MA) / NM3539
PM4044_P = (PM4044NM_P * NM4044NM + PM4044MS_P * NM4044MS + PM4044MA_P * NM4044MA) / NM4044
PM4549_P = (PM4549NM_P * NM4549NM + PM4549MS_P * NM4549MS + PM4549MA_P * NM4549MA) / NM4549
PM5054_P = (PM5054NM_P * NM5054NM + PM5054MS_P * NM5054MS + PM5054MA_P * NM5054MA) / NM5054
```

LABOR FORCE PARTICIPATION RATES

```
PM2024 = PM2024 P
PM2529 = PM2529_P
PM3034 = PM3034 P
PM3539 = PM3539_P
PM4044 = PM4044_P
PM4549 = PM4549_P
PM5054 = PM5054_P
```

LABOR FORCE PARTICIPATION RATES BY MARITAL STATUS

```
PM2024NM = PM2024NM_P * PM2024 / PM2024_P
PM2529NM = PM2529NM P * PM2529 / PM2529 P
```

```
PM3034NM = PM3034NM_P * PM3034 / PM3034_P
PM3539NM = PM3539NM_P * PM3539 / PM3539_P
PM4044NM = PM4044NM_P * PM4044 / PM4044_P
PM4549NM = PM4549NM_P * PM4549 / PM4549_P
PM5054NM = PM5054NM_P * PM5054 / PM5054_P
PM2024MS = PM2024MS_P * PM2024 / PM2024_P
PM2529MS = PM2529MS_P * PM2529 / PM2529_P
PM3034MS = PM3034MS_P * PM3034 / PM3034_P
PM3539MS = PM3539MS_P * PM3539 / PM3539_P
PM4044MS = PM4044MS_P * PM4044 / PM4044_P
PM4549MS = PM4549MS_P * PM4549 / PM4549_P
PM5054MS = PM5054MS_P * PM5054 / PM5054_P
PM2024MA = PM2024MA_P * PM2024 / PM2024_P
PM2529MA = PM2529MA P * PM2529 / PM2529 P
PM3034MA = PM3034MA_P * PM3034 / PM3034_P
PM3539MA = PM3539MA_P * PM3539 / PM3539_P
PM4044MA = PM4044MA_P * PM4044 / PM4044_P
PM4549MA = PM4549MA_P * PM4549 / PM4549_P
PM5054MA = PM5054MA_P * PM5054 / PM5054_P
```

AGE 55 TO 61

PM55 = - 0.76902 - B2_2064DI * B1_M5559D * RM55DI + PM55E_DE + PM55_DM + 0.00062 * RM5559 + 0.00041 * RM5559.1 - 0.00026

* RM5559.2-0.00101 * RM5559.3-0.00147 * RM5559.4-0.00126 * RM5559.5

PM55
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 18 NOV 2009
pm55_adj-(-b1_m5559d*b2_2064di*rm55di+pm55e_de+d09a:pm55_dm-0.00297*
(rm5 $\overline{5} 59+r m 555 \overline{9} .1) / 2)$
$=-0.76902$
(290.186)
$\begin{array}{lrlrlrr}\text { Sum Sq } & 0.0015 & \text { Std Err } & 0.0103 & \text { LHS Mean } & -0.7690 \\ \text { R Sq } & -0.0000 & \text { R Bar Sq } & -0.0000 & \text { F } 0,14 & \text { NC }\end{array}$
D.W.(1) 1.5153 D.W.(2) 1.9558

PM56 = - 0.76098-B2_2064DI * B1_M5559D * RM56DI + PM56E_DE + PM56_DM + 0.00062 * RM5559 + 0.00041 * RM5559.1-0.00026 * RM5559.2-0.00101 * RM5559.3-0.00147 * RM5559.4-0.00126 * RM5559.5

PM5 6
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 18 NOV 2009
pm56_adj-(-b1_m5559d*b2_2064di*rm56di+pm56e_de+d09a:pm56_dm-0.00297*
(rm5559+rm5559.1)/2)
$=-0.76098$
(354.432)
$\begin{array}{lrllllr}\text { Sum Sq } & 0.0010 & \text { Std Err } & 0.0083 & \text { LHS Mean } & -0.7610 \\ \text { R Sq } & 0.0000 & \text { R Bar Sq } & 0.0000 & \text { F 0, 14 } & \text { NC }\end{array}$
D.W.(1) 0.9629 D.W.(2) 1.0276

PM57 = - 0.71065-B2_2064DI * B1_M5559D * RM57DI + PM57E_DE + PM57_DM + 0.00062 * RM5559 + 0.00041 * RM5559.1-0.00026 * RM5559.2-0.00101 * RM5559.3-0.00147 * RM5559.4-0.00126 * RM5559.5 PM5 7 Ordinary Least Squares ANNUAL data for 15 periods from 1994 to 2008 Date: 18 NOV 2009
pm57_adj-(-b1_m5559d*b2_2064di*rm57di+pm57e_de+d09a:pm57_dm-0.00297*
(rm5559+rm5559.1)/2)
$=-0.71065$ (310.143)

Sum Sq 0.0011 Std Err 0.0089 LHS Mean -0.7107
$\begin{array}{lllllll}R & \text { Sq } 0.0000 & \text { R Bar Sq } 0.0000 & \text { F } & 14\end{array}$
D.W.(1) 1.6000 D.W.(2) 1.5177

PM58 = - 0.69412 - B2_2064DI * B1_M5559D * RM58DI + PM58E_DE + PM58_DM + 0.00062 * RM5559 + 0.00041 * RM5559.1 - 0.00026

* RM5559.2-0.00101 * RM5559.3-0.00147 * RM5559.4-0.00126 * RM5559.5

PM5 8
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 18 NOV 2009
pm58 adj-(-b1 m5559d*b2 2064di*rm58di+pm58e de+d09a:pm58 dm-0.00297*
(rm5 $\overline{5} 59+r m 555 \overline{9} .1$) /2)
$=-0.69412$
(253.081)

Sum Sq 0.0016 Std Err 0.0106 LHS Mean -0.6941
R Sq -0.0000 R Bar Sq -0.0000 F 0,14 NC
D.W.(1) 2.4020 D.W. (2) 1.1615

PM59 $=-0.60153-$ B2_2064DI * B1_M5559D * RM59DI + PM59E_DE + PM59_DM $+0.00062 *$ RM5559 + 0.00041 * RM5559.1 - 0.00026

* RM5559.2-0.00101 * RM5559.3-0.00147 * RM5559.4-0.00126 * RM5559.5

PM5 9
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 18 NOV 2009
pm59_adj-(-b1 m5559d*b2_2064di*rm59di+pm59e_de+d09a:pm59_dm-0.00297* (rm5559+rm5559.1)/2)
$=-0.60153$
(198.600)

Sum Sq	0.0019	Std Err	0.0117	LHS Mean	-0.6015	
R Sq	-0.0000	R Bar Sq	-0.0000	F 0,14	NC	
D.W.(1)	1.3589	D.W.(2)	1.9976			

PM60 $=-0.58858-$ B2_2064DI $*$ B1_M6064D * RM60DI + PM60E_DE + PM60_DM + 0.00203 * RM6064 + 0.00160 * RM6064.1-0.00021 * RM6064.2-0.00235 * RM6064.3-0.00374 * RM6064.4-0.00331 * RM6064.5 + 0.01566 * PF58 PM60
Ordinary Least Squares ANNUAL data for 15 periods from 1994 to 2008

Date: 18 NOV 2009
pm60_adj-(-b1_m6064d*b2_2064di*rm60di+pm60e_de+d09a:pm60_dm-0.00598*
(rm6064+rm6064.1)/2)

$$
=\quad \begin{gathered}
0.01566 \\
(0.20056)
\end{gathered} * \mathrm{pf} 58 _ \text {adj }-\underset{(12.5405)}{0.5888}
$$

Sum Sq	0.0012	Std Err	0.0097	LHS Mean	-0.5791	
R Sq	0.0031	R Bar Sq	-0.0736	F	1,13	0.0402
D.W. (1)	2.4571	D.W.(2)	1.6803			

PM61 $=-0.55646-$ B2_2064DI $*$ B1_M6064D * RM61DI + PM61E_DE + PM61_DM + 0.00203 * RM6064 + 0.00160 * RM6064.1-0.00021 * RM6064.2-0.00235 * RM6064.3-0.00374 * RM6064.4-0.00331 * RM6064.5 + 0.08544 * PF59 PM61 Ordinary Least Squares ANNUAL data for 15 periods from 1994 to 2008 Date: 18 NOV 2009
pm61_adj-(-b1_m6064d*b2_2064di*rm61di+pm61e_de+d09a:pm61_dm-0.00598*
(rm60 $64+r m 606 \overline{4} .1) / 2)$
$=0.08544 *$ pf59_adj -0.55646
(0.91866) (10.4384)

| Sum Sq | 0.0017 | Std Err | 0.0116 | LHS Mean | -0.5076 |
| :--- | ---: | :--- | ---: | :--- | ---: | ---: |
| R Sq | 0.0610 | R Bar Sq | -0.0113 | F 1, 13 | 0.8439 |

0.8439
D.W.(1) 1.5689 D.W.(2) 1.9879

AGE 62 TO 74

PM62 $=0.26329 *$ PF60 - 0.29161 - B2_2064DI * B1_M6064D * RM62DI + PM62E_DE + PM62_DM + 0.00203 * RM6064 + 0.00160 * RM6064.1-0.00021 * RM6064.2-0.00235 * RM6064.3-0.00374 * RM6064.4-0.00331 * RM6064.5-0.60 *RRADJ_M62-0.02 * POT_ET_TXRT_62

> PM62

Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 18 NOV 2009
pm62_adj-(-b1_m6064d*b2_2064di*rm62di+pm62e_de+d09a:pm62_dm-0.00598*
(rm6 $\overline{0} 64+r m 606 \overline{4} .1) / 2-0.6 \overline{0} * r r a d j _m 62-0.02 *$ pot_et_txrt_62) $^{-}$
$=0.26329 * \mathrm{pf60}$ adj -0.29161
(3.03035) (6.36388)

| Sum Sq | 0.0021 | Std Err | 0.0127 | LHS Mean | -0.1531 |
| :--- | ---: | :--- | :--- | :--- | :--- | ---: |
| R Sq | 0.4140 | R Bar Sq | 0.3689 | F 1,13 | 9.1830 |

D.W. (1) 1.6709 D.W. (2) 2.6665 FI 13

PM63 $=0.40940$ * PF61-0.29495-B2_2064DI * B1_M6064D * RM63DI + PM63E_DE + PM63_DM + 0.00203 * RM6064 + 0.00160 * RM6064.1-0.00021 * RM6064.2-0.00235 * RM6064.3-0.00374 * RM6064.4-0.00331 * RM6064.5-0.55 * RRADJ_M63 - 0.02 * POT_ET_TXRT_63

```
    PM63
    Ordinary Least Squares
    ANNUAL data for 15 periods from 1994 to 2008
    Date: 18 NOV 2009
    pm63_adj-(-b1_m6064d*b2_2064di*rm63di+pm63e_de+d09a:pm63_dm-0.00598*
    (rm6\overline{0}64+rm606\overline{4}.1)/2-0.5\overline{5}*rradj_m63-0.02*pot_et_txrt_63)
```

$$
\begin{aligned}
0.40940 \\
(4.33250)
\end{aligned} * \mathrm{pf61} \text { adj }-0.29495
$$

Sum Sq	0.0027	Std Err	0.0143	LHS Mean	-0.0953	
R Sq	0.5908	R Bar Sq	0.5593	F 1, 13	18.7706	
D.W. (1)	2.3641	D.W. (2)	1.4502			

PM64 $=0.47933 *$ PF62-0.22665 - B2_2064DI * B1_M6064D * RM64DI + PM64E_DE + PM64_DM + $0.00203 *$ RM6064 + $0.00160 *$ RM6064.1-0.00021 * RM6064.2-0.00235 * RM6064.3-0.00374 * RM6064.4-0.00331 * RM6064.5-0.50 *RRADJ_M64-0.02 * POT_ET_TXRT_64
PM64

Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 18 NOV 2009
pm64_adj-(-b1_m6064d*b2_2064di*rm64di+pm64e_de+d09a:pm64_dm-0.00598*
(rm6064+rm6064.1)/2-0.50*rradj_m64-0.02*pot_et_txrt_64)

$$
\left.=\begin{array}{r}
0.47933 \\
(3.85359)
\end{array} * \mathrm{pf} 62 _\mathrm{adj}-0.22665\right)
$$

Sum Sq	0.0041	Std Err	0.0177	LHS Mean	-0.0286	
R Sq	0.5332	R Bar Sq	0.4973	F 1, 13	14.8502	
D.W.(1)	1.3486	D.W.(2)	1.7240			

PM65 $=0.72722$ * PF63-0.35819 - B2_2064DI * B1_M6569D * RM65DI_EFF + PM65E_DE + PM65_DM + 0.00067 * RM6569 + 0.00040 * RM6569.1-0.00040 * RM6569.2-0.00127 * RM6569.3-0.00178 * RM6569.4-0.00151 * RM6569.5-0.45 * RRADJ_M65-0.02 * POT_ET_TXRT_65

```
PM65
    Ordinary Least Squares
    ANNUAL data for 15 periods from 1994 to 2008
    Date: 18 NOV 2009
    pm65_adj-(pm65e_de+d09a:pm65_dm-0.00389*(rm6569+rm6569.1)/2-0.45*
    rrad\overline{j}_m65-0.02*\overline{pot_et_txrt_65)}
        = 0.72722 * pf63_adj - 0.35819
        (6.79574) (9.27279)
    Sum Sq 0.0024 Std Err 0.0136 LHS Mean -0.0968
    R Sq 0.7803 R Bar Sq 0.7634 F 1, 13 46.1821
    D.W.( 1) 1.9507 D.W.( 2) 2.4425
```

PM66 $=0.38684 *$ PF64-0.20883-B2_2064DI * B1_M6569D * RM66DI_EFF + PM66E_DE + PM66_DM + 0.00067 * RM6569 + $0.00040 *$ RM6569.1-0.00040 * RM6569.2-0.00127 * RM6569.3-0.00178 * RM6569.4-0.00151 * RM6569.5-0.40 *RRADJ_M66-0.02 * POT_ET_TXRT_66 PM6 6
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 18 NOV 2009
pm66_adj-(pm66e_de+d09a:pm66_dm-0.00389*(rm6569+rm6569.1)/2-0.40*
rradj_m66-0.02*pot_et_txrt_66)
$=0.38684 * \mathrm{pf64}$ adj -0.20883

$$
(3.84518) \quad(6.36042)
$$

Sum Sq 0.0029 Std Err 0.0151 LHS Mean -0.0835
$\begin{array}{lll}\text { R Sq } & 0.5321 \quad \text { R Bar Sq } 0.4961 \quad F \quad 1,13 \quad 14.7854\end{array}$
D.W. (1) 1.4843 D.W.(2) 2.6786

```
PM67 = 0.35012 * PF65-0.15975 + PM67E_DE + PM67_DM + 0.00067 * RM6569 + 0.00040 * RM6569.1 - 0.00040 * RM6569.2 - 0.00127 *
RM6569.3-0.00178 * RM6569.4-0.00151 * RM6569.5-0.35 * RRADJ_M67-0.02 * POT_ET_TXRT_67
    PM67
    Ordinary Least Squares
    ANNUAL data for 15 periods from 1994 to 2008
    Date: 18 NOV 2009
    pm67_adj-(pm67e_de+d09a:pm67_dm-0.00389*(rm6569+rm6569.1)/2-0.35*
    rradj m67-0.02*\overline{pot et txrt 67)}
            = 0.35012 * pf65_adj - 0.15975
                (2.57310) (4.49414)
    Sum Sq 0.0039 Std Err 0.0173 LHS Mean -0.0690
    R Sq 0.3374 R Bar Sq 0.2865 F 1, 13 6.6209
    D.W.( 1) 2.5130 D.W.( 2) 2.3224
PM68 = 0.95984 * PF66 - 0.26305 + PM68E_DE + PM68_DM + 0.00067 * RM6569 + 0.00040 * RM6569.1 - 0.00040 * RM6569.2 - 0.00127 *
RM6569.3-0.00178 * RM6569.4-0.00151 * RM6569.5 - 0.30 * RRADJ_M68 - 0.02 * POT_ET_TXRT_68
    PM68
    Ordinary Least Squares
    ANNUAL data for 15 periods from 1994 to 2008
    Date: 18 NOV 2009
    pm68_adj-(pm68e_de+d09a:pm68_dm-0.00389*(rm6569+rm6569.1)/2-0.30*
    rradj_m68-0.02*pot_et_txrt_68)
            = 0.95984 * pf66_adj - 0.26305
                (6.75736) - (8.03455)
\begin{tabular}{lllllll} 
Sum Sq & 0.0040 & Std Err & 0.0176 & & LHS Mean & -0.0440 \\
R Sq & 0.7784 & R Bar Sq & 0.7613 & F 1,13 & 45.6618
\end{tabular}
PM69 = 0.74113 * PF67-0.22589 + PM69E_DE + PM69_DM + 0.00067 * RM6569 + 0.00040 * RM6569.1 - 0.00040 * RM6569.2 - 0.00127 *
RM6569.3-0.00178 * RM6569.4-0.00151 * RM6569.5-0.30 * RRADJ_M69 - 0.02 * POT_ET_TXRT_69
    PM69
    Ordinary Least Squares
    ANNUAL data for 15 periods from 1994 to 2008
    Date: 18 NOV 2009
    pm69 adj-(pm69e de+d09a:pm69 dm-0.00389*(rm6569+rm6569.1)/2-0.30*
    rradj_m69-0.02*pot_et_txrt_69)
            = 0.74113 * pf67_adj - 0.22589
                (6.16586) - (8.98258)
    Sum Sq 0.0033 Std Err 0.0159 LHS Mean -0.0729
    R Sq 0.7452 R Bar Sq 0.7256 F 1, 13 38.0179
    D.W.( 1) 1.8167 D.W.( 2) 1.8770
PM70 = 0.46445 * PF68-0.23451 + PM70E_DE + PM70_DM - 0.00013 * RM7074-0.00016 * RM7074.1 - 0.00013 * RM7074.2 - 0.00006 *
RM7074.3 + 0.00000 * RM7074.4 + 0.00003 * RM7074.5
    PM70
    Ordinary Least Squares
    ANNUAL data for 15 periods from 1994 to 2008
    Date: 18 NOV 2009
    pm70_adj-(pm70e_de+d09a:pm70_dm-0.00045*(rm7074+rm7074.1)/2)
        = (\begin{array}{c}{0.46445 * pf68_adj - 0.23451}\\{(3.13923)}\end{array}
```

Sum Sq	0.0030	Std Err	0.0153	LHS Mean	-0.1508	
R Sq	0.4312	R Bar Sq	0.3874	F 1, 13	9.8548	
D.W.(1)	1.6266	D.W. (2)	1.7115			

PM71 $=0.27684$ * PF69-0.20679 + PM71E_DE + PM71_DM - 0.00013 * RM7074-0.00016 * RM7074.1-0.00013 * RM7074.2 - 0.00006 * RM7074.3 + 0.00000 * RM7074.4 + 0.00003 * RM7074.5 PM71
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 18 NOV 2009
pm71_adj-(pm71e_de+d09a:pm71_dm-0.00045*(rm7074+rm7074.1)/2)

$$
=\begin{array}{r}
0.27684 \\
(2.45836)
\end{array} * \mathrm{pf} 69 _ \text {adj }-0.20679
$$

Sum Sq	0.0017	Std Err	0.0114	LHS Mean	-0.1621
R Sq	0.3174	R Bar Sq	0.2648	F 1, 13	6.0435

D.W. (1) 2.0356 D.W. (2) 2.6476

PM72 $=0.77240$ * PF70 - 0.25289 + PM72E_DE + PM72_DM - 0.00013 * RM7074-0.00016 * RM7074.1-0.00013 * RM7074.2 - 0.00006 * RM7074.3 + 0.00000 * RM7074.4 + 0.00003 * RM7074.5

PM72

Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 18 NOV 2009
pm72_adj-(pm72e_de+d09a:pm72_dm-0.00045*(rm7074+rm7074.1)/2)

$$
=0.77240 * \mathrm{pf70} \text { adj }-0.25289
$$

(4.46799) (10.6268)

Sum Sq	0.0030	Std Err	0.0152	LHS Mean	-0.1480	
R Sq	0.6056	R Bar Sq	0.5753	F 1,13	19.9629	
D.W.(1)	2.5174	D.W.(2)	2.4964			

PM73 $=0.65971$ * PF71-0.19394 + PM73E_DE + PM73_DM - 0.00013 * RM7074-0.00016 * RM7074.1-0.00013 * RM7074.2-0.00006 * RM7074.3 + 0.00000 * RM7074.4 + 0.00003 * RM7074.5

PM73
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 18 NOV 2009
pm73_adj-(pm73e_de+d09a:pm73_dm-0.00045*(rm7074+rm7074.1)/2)
$=0.65971 * \mathrm{pf71}$ adj -0.19394
(4.09270) (9.6357)

Sum Sq 0.0022 Std Err 0.0131 LHS Mean -0.1127
$\begin{array}{lllllll}\text { R Sq } & 0.5630 & \text { R Bar Sq } 0.5294 & \mathrm{~F} & 1,13 & 16.7502\end{array}$
D.W. (1) 1.6480 D.W.(2) 2.6493

PM74 $=0.78464$ * PF72-0.17649 + PM74E_DE + PM74_DM - 0.00013 * RM7074-0.00016 * RM7074.1-0.00013 * RM7074.2 - 0.00006 * RM7074.3 + 0.00000 * RM7074.4 + 0.00003 * RM7074.5 PM74

```
    Ordinary Least Squares
```

 ANNUAL data for 15 periods from 1994 to 2008
 Date: 18 NOV 2009
 pm74_adj-(pm74e_de+d09a:pm74_dm-0.00045*(rm7074+rm7074.1)/2)
 \(=\quad \begin{gathered}0.78464 * p f 72 _a d j-0.17649 \\ (3.48183)\end{gathered}\)
 | Sum Sq | 0.0030 | Std Err | 0.0151 | LHS Mean | -0.0915 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| R Sq | 0.4825 | R Bar Sq | 0.4427 | F 1, 13 | 12.1231 | |
| D.W.(1) | 1.8314 | D.W.(2) | 1.4740 | | | |

AGE 75 TO 79

```
PM75 = PM74.4 * 0.920 + DPM75O_FE
PM76 = PM75.4 * 0.920 + DPM75O_FE
PM77 = PM76.4 * 0.920 + DPM75O_FE
PM78 = PM77.4 * 0.920 + DPM75O_FE
PM79 = PM78.4 * 0.920 + DPM75O_FE
```

AGE 80 AND OVER

```
PM80_P = PM79.4 * 0.965**(1) + DPM75O_FE
PM81_P = PM79.8 * 0.965**( 2) + DPM75O_FE
PM82_P = PM79.12 * 0.965**(3) + DPM75O_FE
PM83_P = PM79.16 * 0.965**(4) + DPM75O_FE
PM84_P = PM79.20 * 0.965**(5) + DPM75O_FE
PM85_P = MOVAVG(8,PM79.24) * 0.965**(6) + DPM75O_FE
PM86_P = MOVAVG(8,PM79.28) * 0.965**( 7) + DPM75O_FE
PM87_P = MOVAVG(8,PM79.32) * 0.965**( 8) + DPM75O_FE
PM88_P = MOVAVG(8,PM79.36) * 0.965**(9) + DPM75O_FE
PM89_P = MOVAVG(8,PM79.40) * 0.965**(10) + DPM75O_FE
PM90_P = MOVAVG(8,PM79.44) * 0.965**(11) + DPM75O_FE
PM91_P = MOVAVG(8,PM79.48) * 0.965**(12) + DPM75O_FE
PM92_P = MOVAVG(8,PM79.52) * 0.965**(13) + DPM75O_FE
PM93_P = MOVAVG(8,PM79.56) * 0.965**(14) + DPM75O_FE
PM94_P = MOVAVG(8,PM79.60) * 0.965**(15) + DPM75O_FE
PM95_P = PM94_P * 0.965 + DPM75O_FE
PM96_P = PM95_P * 0.965 + DPM75O_FE
PM97_P = PM96_P * 0.965 + DPM75O_FE
PM98_P = PM97_P * 0.965 + DPM75O_FE
PM99_P = PM98_P * 0.965 + DPM75O_FE
PM100_P = PM99_P * 0.965 + DPM75O_FE
PM80O_P = (PM80_P*NM80 + PM81_P*NM81 + PM82_P*NM82 + PM83_P*NM83 + PM84_P*NM84 + PM85_P*NM85 + PM86_P*NM86
+ PM87_P*NM87 + PM88_P*NM88 + PM89_P*NM89 +
PM90_P*NM90 + PM91_P*NM91 + PM92_P*NM92 + PM93_P*NM93 + PM94_P*NM94 + PM95_P*NM95 + PM96_P*NM96 +
PM97_P*NM97 + PM98_P*NM98 + PM99_P*NM99 +
PM100_P*NM100) / NM80O
```

PM80O = PM80O_P
PM80 $=$ PM80_P $*$ PM800 $/$ PM800_P
PM81 $=$ PM81_P $*$ PM80O / PM800_P
PM82 $=$ PM82_P $*$ PM80O $/$ PM800_P
PM83 $=$ PM83_P * PM80O / PM80O_P
PM84 $=$ PM84_P $*$ PM800 $/$ PM80O_P
PM85 = PM85_P * PM800 / PM800_P
PM86 $=$ PM86_P $*$ PM80O $/$ PM80O_P
PM87 = PM87_P * PM800 / PM800_P
PM88 $=$ PM88_P $*$ PM80O $/$ PM80O_P

```
PM89 = PM89_P * PM80O / PM80O_P
PM90 = PM90_P * PM80O / PM80O_P
PM91 = PM91_P * PM80O / PM80O_P
PM92 = PM92_P * PM800 / PM800_P
PM93 = PM93_P * PM800 / PM80O_P
PM94 = PM94_P * PM80O / PM800_P
PM95 = PM95_P * PM80O / PM800_P
PM96 = PM96_P * PM80O / PM80O_P
PM97 = PM97_P * PM80O / PM80O_P
PM98 = PM98_P * PM800 / PM80O_P
PM99 = PM99_P * PM80O / PM800_P
PM100 = PM100_P * PM80O / PM80O_P
```


FEMALE LFPR EQUATIONS

AGE 16 TO 19

```
RNLF1617_H = (- 0.00741 + 0.23393 * RF1617CU6 + 0.00051 * (RF1617 + RF1617.1)/2)
    RNLF1617_H
    Ordinary Least Squares
    ANNUAL data for 15 periods from 1994 to 2008
    Date: }7\mathrm{ NOV 2009
    rnlf1617_h
        =0.23393 * rf1617cu6 + 0.00051 * (rf1617+rf1617.1)/2 - 0.00741
                (8.23195) (2.03397) (1.69048)
    Sum Sq 0.0000 Std Err 0.0013 LHS Mean 0.0255
    R Sq 0.8827 R Bar Sq 0.8631 F 2, 12 45.1464
    D.W.( 1) 1.9427 D.W.( 2) 1.9760
RNLF1617_S+RNLF1617_O2 = (0.01166 * YEAR + 0.00616 * (RF1617 + RF1617)/2 - 0.69608)
    RNLF1617 S
    Ordinary Least Squares
    ANNUAL data for 15 periods from 1994 to 2008
    Date: }7\mathrm{ NOV 2009
    rnlf1617_s+rnlf1617_o2
        = 0.00616 * (rf1617+rf1617.1)/2 + 0.01166 * year - 0.69608
                (3.77102) (22.1659) (10.2653)
    Sum Sq 0.0008 Std Err 0.0083 LHS Mean 0.5854
R Sq 0.9770 R Bar Sq \(0.9731 \quad F \quad 2,12 \quad 254.625\)
    D.W.( 1) 1.7133 D.W.( 2) 2.6877
```

PF1617 = 0.98681 - (B2_2064DI * B1_F1617D * RF1617DI) - (- $0.00741+0.23393$ * RF1617CU6 + 0.00051 * MOVAVG(5,RF1617)) $-(-0.69608+0.01166 *$ TR_PF1617 +0.00616 * MOVAVG(5,RF1617) $)$

> PF1617_AADJ

Ordināry Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 8 NOV 2009

```
pf1617_aadj+b2_2064di*b1_f1617d*rf1617di+rnlf1617_s+rnlf1617_h+
rnlf16\overline{17_o2}
    = 0.98681
        (2200.07)
\begin{tabular}{lrlrlrr} 
Sum Sq & 0.0000 & Std Err & 0.0017 & LHS Mean & 0.9868 \\
R Sq & -0.0000 & R Bar Sq & -0.0000 & F & 0,14 & NC
\end{tabular}
D.W.( 1) 1.3375 D.W.( 2) 1.7772
```

```
RNLF1819_H = (-0.00080 + 0.22814 * RF1819CU6 + 0.00318 * (RF1819 + RF1819.1)/2)
    RNLF1819_H
        Ordinary Least Squares
        ANNUAL data for 15 periods from 1994 to 2008
        Date: }7\mathrm{ NOV 2009
        rnlf1819_h
            = 0.22814*rf1819cu6 + 0.00318* (rf1819+rf1819.1)/2 - 0.00080
                (4.59623) (3.03414) (0.05838)
        Sum Sq 0.0002 Std Err 0.0042 LHS Mean 0.0728
        R Sq 0.7711 R Bar Sq 0.7330 F 2, 12 20.2141
        D.W.( 1) 1.9216 D.W.( 2) 2.0402
```

RNLF1819_S+RNLF1819_O2 $=(0.00764 *$ YEAR $+0.00667 *($ RF1819 + RF1819.1 $) / 2-0.53433)$
RNLF1819_S
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 7 NOV 2009
rnlf1819_s+rnlf1819_o2
$=0.00667 *(r f 1819+r f 1819.1) / 2+0.00764 *$ year -0.53433
(4.02033) (18.4794) (10.2363)
$\begin{array}{lrlrlrr}\text { Sum Sq } & 0.0005 & \text { Std Err } & 0.0067 & \text { LHS Mean } & 0.3252 \\ \text { R Sq } & 0.9662 & \text { R Bar Sq } & 0.9605 & \text { F 2, } 12 & 171.394\end{array}$
D.W. (1) 2.6533 D.W. (2) 2.6698
PF1819 $=0.98200$
- (B2_2064DI * B1_F1819D * RF1819DI)
$-(-0.00080+0.22814 *$ RF1819CU6 +0.00318 * MOVAVG(5,RF1819) $)$
$-(-0.53433+0.00764 *$ TR_PF1819 $+0.00667 * \operatorname{MOVAVG}(5, R F 1819))$
PF1819_AADJ
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 8 NOV 2009
pf1819_aadj+b2_2064di*b1_f1819d*rf1819di+rnlf1819_s+rnlf1819_h+
rnlf1819_o2
$=0.98200$
(1428.98)

Sum Sq	0.0001	Std Err	0.0027	LHS Mean	0.9820
R Sq	0.0000	R Bar Sq	0.0000	F 0,14	NC
D.W. (1)	1.9389	D.W. (2)	2.5627		

AGE 20 TO 44
(NOTE: THE REGRESSIONS IN THIS SECTION OF WERE BASED ON LFPR NOT SEASONALLY ADJUSTED MARCH DATA. SINCE WE WANT TO PROJECT SEASONAL ADJUSTED VALUES, WE APPLIED A SEASONAL ADJUSTMENT (SA) FACTOR TO THE ESTIMATES. THE SA FACTOR REPRESENTS THE RATIO OF THE SA TO THE NOT SA MARCH 2009 VALUES FOR FEMALES 2024, 2529, 3034, 3539, AND 4044.)

FEMALES - NEVER MARRIED WITH AT LEAST 1 OWN CHILD UNDER AGE 6

```
PF2024NMC6U_P = ( 0.70868 - 0.00087 * RF2024-0.00099 * RF2024.1 - 0.00063 * RF2024.2 - 0.00007 * RF2024.3 + 0.00041 * RF2024.4 +
0.00052 * RF2024.5 - B2_2064DI * B1_F2024D * RF2024DI) * 1.0160
    PF2024NMC6U_MAJ
    Ordinary Least Squares
    ANNUAL data for 12 periods from 1997 to 2008
    Date: }7\mathrm{ NOV 2009
    pf2024nmc6u_maj+b2_2064di*b1_f2024d*rf2024di+(0.00163*movavgf2024)
        = 0.70868
            (90.3041)
        Sum Sq 0.0081 Std Err 0.0272 LHS Mean 0.7087
        R Sq -0.0000 R Bar Sq -0.0000 F 0, 11 NC
        D.W.( 1) 1.3094 D.W.( 2) 1.3334
PF2529NMC6U_P = ( 0.74861 - 0.00056 * RF2529-0.00070 * RF2529.1-0.00057 * RF2529.2 - 0.00029 * RF2529.3 - 0.00002 * RF2529.4 +
0.00013 * RF2529.5 - B2_2064DI * B1_F2534D * RF2529DI) * 0.9981
        PF2529NMC6U_MAJ
        Ordinary Least Squares
        ANNUAL data for 12 periods from 1997 to 2008
        Date: }7\mathrm{ NOV 2009
        pf2529nmc6u_maj+b2_2064di*b1_f2534d*rf2529di+(0.00223*movavgf2529)
            = 0.74861
            (84.7812)
        Sum Sq 0.0103 Std Err 0.0306 LHS Mean 0.7486
        R Sq -0.0000 R Bar Sq -0.0000 F 0, 11 NC
        D.W.( 1) 1.9411 D.W.( 2) 2.6489
```

PF3034NMC6U_P $=(0.73944-0.00081 *$ RF3034 - 0.00065 * RF3034.1 $+0.00005 *$ RF3034.2 $+0.00089 *$ RF3034.3 +0.00143 * RF3034.4
+0.00128 * RF3034.5-B2_2064DI * B1_F2534D * RF3034DI) * 0.9980
PF3034NMC6U_MAJ
Ordinary Least Squares
ANNUAL data for 11 periods from 1998 to 2008
Date: 7 NOV 2009
pf3034nmc6u_maj+b2_2064di*b1_f2534d*rf3034di-(0.00219*movavgf3034)

```
    = 0.73944
    (82.4756)
\begin{tabular}{llllllr} 
Sum Sq & 0.0088 & Std Err & 0.0297 & LHS Mean & 0.7394 \\
R Sq & 0.0000 & R Bar Sq & 0.0000 & F 0,10 & NC
\end{tabular}
PF3539NMC6U_P = ( 0.75363-0.00195 * RF3539-0.00216 * RF3539.1-0.00128 * RF3539.2 + 0.00002 * RF3539.3 + 0.00111 * RF3539.4
+ 0.00132 * RF3539.5 - B2_2064DI * B1_F3544D * RF3539DI) * 0.9989
    PF3539NMC6U_MAJ
        Ordinary Least Squares
        ANNUAL data for 12 periods from 1997 to 2008
        Date: }7\mathrm{ NOV 2009
    pf3539nmc6u_maj+b2_2064di*b1_f3544d*rf3539di+(0.00294*movavgf3539)
        = 0.75363
            (43.4406)
\begin{tabular}{lrllllr} 
Sum Sq & 0.0397 & Std Err & 0.0601 & LHS Mean & 0.7536 \\
R Sq & 0.0000 & R Bar Sq & 0.0000 & F 0, 11 & NC
\end{tabular}
    D.W.( 1) 1.1836 D.W.( 2) 1.2835
PF4044NMC6U_P = ( 0.73920-0.00026 * RF4044-0.00050 * RF4044.1-0.00068 * RF4044.2-0.00076 * RF4044.3-0.00070 * RF4044.40.00046 * RF4044.5-B2_2064DI * B1_F3544D * RF4044DI) * 0.9989 PF4044NMC6U_MAJ
Ordinary Least Squares
ANNUAL data for 12 periods from 1997 to 2008
Date: 7 NOV 2009
pf4044nmc6u_maj+b2_2064di*b1_f3544d*rf4044di+(0.00336*movavgf4044)
\(=0.73920\)
(27.1826)
Sum Sq 0.0976 Std Err 0.0942 LHS Mean 0.7392
R Sq -0.0000 R Bar Sq -0.0000 F 0, 11 NC
D.W.( 1) 0.8825 D.W. ( 2) 1.5609
```

FEMALES - NEVER MARRIED NO OWN CHILDREN UNDER AGE 6

PF2024NMNC6_P $=(1.13654-0.00366 *$ TR_PF2024NMNC6-0.00087 * RF2024-0.00099 * RF2024.1-0.00063 * RF2024.2-0.00007 *
RF2024.3 + 0.00041 * RF2024.4 + 0.00052 * RF2024.5 - B2_2064DI * B1_F2024D * RF2024DI) * 1.0160
PF2024NMNC6 MAJ
Ordinary Lēast Squares
ANNUAL data for 12 periods from 1997 to 2008
Date: 7 NOV 2009
pf2024nmnc6_maj+b2_2064di*b1_f2024d*rf2024di+(0.00163*movavgf2024)
$=-0.00366 *$ year +1.13654
(4.05623) (12.2888)

Sum Sq 0.0012 Std Err 0.0108 LHS Mean 0.7616
R Sq $0.6220 \quad$ R Bar Sq $0.5842 \quad F \quad 1,1016.4530$
D.W. (1) 2.0236 D.W. (2) 1.9870

```
PF2529NMNC6_P = ( 0.98148-0.00111 * TR_PF2529NMNC6 - 0.00056 * RF2529-0.00070 * RF2529.1-0.00057 * RF2529.2 - 0.00029 *
RF2529.3-0.00002 * RF2529.4 + 0.00013 * RF2529.5 - B2_2064DI * B1_F2534D * RF2529DI) * 0.9981
    PF2529NMNC6 MAJ
        Ordinary Least Squares
        ANNUAL data for 12 periods from 1997 to 2008
        Date: }7\mathrm{ NOV 2009
        pf2529nmnc6_maj+b2_2064di*b1_f2534d*rf2529di+(0.00223*movavgf2529)
            = - 0.00111 * year + 0.98148
                (1.16711) (10.0848)
        Sum Sq 0.0013 Std Err 0.0113 LHS Mean 0.8680
        R Sq 0.1199 R Bar Sq 0.0319 F 1, 10 1.3621
        D.W.( 1) 1.6528 D.W.( 2) 2.2981
```

PF3034NMNC6_P $=(0.84901-0.00081 *$ RF3034 - $0.00065 *$ RF3034.1 $+0.00005 *$ RF3034.2 $+0.00089 *$ RF3034.3 + 0.00143 * RF3034.4

+ 0.00128 * RF3034.5 - B2_2064DI * B1_F2534D * RF3034DI) * 0.9980
PF3034NMNC6 MAJ
Ordinary Least Squares
ANNUAL data for 11 periods from 1998 to 2008
Date: 7 NOV 2009
pf3034nmnc6_maj+b2_2064di*b1_f2534d*rf3034di-(0.00219*movavgf3034)
$=0.84901$
(165.157)

| Sum Sq | 0.0029 | Std Err | 0.0170 | LHS Mean | 0.8490 |
| :--- | ---: | :--- | :--- | :--- | ---: | ---: |
| R Sq | 0.0000 | R Bar Sq | 0.0000 | F 0, 10 | NC |

D.W. (1) 0.5820 D.W. (2) 1.1688

PF3539NMNC6_P $=(0.84953-0.00195 *$ RF3539-0.00216 * RF3539.1-0.00128 * RF3539.2 + 0.00002 * RF3539.3 + 0.00111 * RF3539.4 + 0.00132 * RF3539.5 - B2_2064DI * B1_F3544D * RF3539DI) * 0.9989

PF3539NMNC6_MAJ
Ordinary Least Squares
ANNUAL data for 12 periods from 1997 to 2008
Date: 7 NOV 2009
pf3539nmnc6_maj+b2_2064di*b1_f3544d*rf3539di+(0.00294*movavgf3539)
$=0.84953$
(152.920)

Sum Sq	0.0041	Std Err	0.0192	LHS Mean	0.8495	
R Sq	-0.0000	R Bar Sq	-0.0000	F	0,11	NC

D.W.(1) 1.1860 D.W.(2) 1.2464

PF4044NMNC6_P $=(0.83790-0.00026$ * RF4044-0.00050 * RF4044.1-0.00068 * RF4044.2-0.00076 *RF4044.3-0.00070 * RF4044.4 0.00046 * RF4044.5-B2_2064DI * B1_F3544D * RF4044DI) * 0.9989 PF4044NMNC6 MAJ Ordinary Lēast Squares ANNUAL data for 12 periods from 1997 to 2008 Date: 7 NOV 2009 pf4044nmnc6_maj+b2_2064di*b1_f3544d*rf4044di+(0.00336*movavgf4044)

```
    = 0.83790
```

 (145.443)
 | Sum Sq | 0.0044 | Std Err | 0.0200 | LHS Mean | 0.8379 | |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| R Sq | 0.0000 | R Bar Sq | 0.0000 | F 0,11 | NC | |
| D.W.(1) | 1.2197 | D.W. (2) | 1.8270 | | | |

FEMALES - MARRIED SPOUSE PRESENT WITH AT LEAST 1 OWN CHILD UNDER AGE 6

```
PF2024MSC6U_P = ( 0.69043-0.00087 * RF2024-0.00099 * RF2024.1-0.00063 * RF2024.2 - 0.00007 * RF2024.3 + 0.00041 * RF2024.4 +
0.00052 * RF2024.5 - B2_2064DI * B1_F2024D * RF2024DI - 0.1*IF2024MSC6U) * 1.0160
    PF2024MSC6U MAJ
    Ordinary Least Squares
    ANNUAL data for 12 periods from 1997 to 2008
    Date: }7\mathrm{ NOV 2009
    pf2024msc6u_maj+b2_2064di*b1_f2024d*rf2024di+0.1*if2024msc6u+
    (0.00163*movavgf2024)
        = 0.69043
        (74.8521)
    Sum Sq 0.0112 Std Err 0.0320 LHS Mean 0.6904
    R Sq 0.0000 R Bar Sq 0.0000 F 0, 11 NC
    D.W.( 1) 1.1094 D.W.( 2) 0.7434
PF2529MSC6U_P = ( 0.76218 - 0.00056 * RF2529-0.00070 * RF2529.1-0.00057 * RF2529.2 - 0.00029 * RF2529.3 - 0.00002 * RF2529.4 +
0.00013 * RF2529.5 - B2_2064DI * B1_F2534D * RF2529DI - 0.1*IF2529MSC6U) * 0.9981
    PF2529MSC6U MAJ
    Ordinary Least Squares
    ANNUAL data for 12 periods from 1997 to 2008
    Date: }7\mathrm{ NOV 2009
    pf2529msc6u maj+b2 2064di*b1 f2534d*rf2529di+0.1*if2529msc6u+
    (0.00223*mov
        = 0.76218
        (110.394)
    Sum Sq 0.0063 Std Err 0.0239 LHS Mean 0.7622
    R Sq 0.0000 R Bar Sq 0.0000 F 0, 11 NC
    D.W.( 1) 0.6195 D.W.( 2) 0.9444
```

PF3034MSC6U_P $=(0.78186-0.00081 *$ RF3034-0.00065 * RF3034.1 + $0.00005 *$ RF3034.2 $+0.00089 *$ RF3034.3 + 0.00143 * RF3034.4

+ 0.00128 * RF3034.5-B2_2064DI * B1_F2534D * RF3034DI - 0.1*IF3034MSC6U) * 0.9980
PF3034MSC6U_MAJ
Ordinary Least Squares
ANNUAL data for 12 periods from 1997 to 2008
Date: 7 NOV 2009
pf3034msc6u_maj+b2_2064di*b1_f2534d*rf3034di+0.1*if3034msc6u-
(0.00219*movavgf30 34)
$=0.78186$
(211.713)
$\begin{array}{lrlrlr}\text { Sum Sq } & 0.0018 & \text { Std Err } & 0.0128 & \text { LHS Mean } & 0.7819 \\ \text { R Sq } & -0.0000 & \text { R Bar Sq } & -0.0000 & \text { F } & 0,11\end{array}$

```
D.W.( 1) 0.7088 D.W.( 2) 0.9441
```

PF3539MSC6U_P $=(0.79072-0.00195$ * RF3539-0.00216 * RF3539.1-0.00128 * RF3539.2 + 0.00002 * RF3539.3 + 0.00111 * RF3539.4 + 0.00132 * RF3539.5-B2_2064DI * B1_F3544D * RF3539DI - 0.1*IF3539MSC6U) * 0.9989 PF3539MSC6U MAJ
Ordinary Lēast Squares
ANNUAL data for 12 periods from 1997 to 2008
Date: 7 NOV 2009
pf3539msc6u_maj+b2_2064di*b1_f3544d*rf3539di+0.1*if3539msc6u+
(0.00294*movavgf35̄39)
$=0.79072$
(252.139)

Sum Sq 0.0013 Std Err 0.0109 LHS Mean 0.7907
R Sq 0.0000 R Bar Sq 0.0000 F 0,11 NC
D.W.(1) 1.0179 D.W. (2) 1.6902

PF4044MSC6U_P $=(0.79356-0.00026 *$ RF4044-0.00050 * RF4044.1-0.00068 * RF4044.2-0.00076 * RF4044.3-0.00070 * RF4044.40.00046 * RF4044.5-B2_2064DI * B1_F3544D * RF4044DI - 0.1*IF4044MSC6U) * 0.9989 PF4044MSC6U_MAJ
Ordinary Least Squares
ANNUAL data for 12 periods from 1997 to 2008
Date: 7 NOV 2009
pf4044msc6u maj+b2 2064di*b1 f3544d*rf4044di+0.1*if4044msc6u+ (0.00336*movavgf40 $\overline{4} 4$)
$=0.79356$
(105.974)
Sum Sq 0.0074 Std Err 0.0259 LHS Mean 0.7936

R Sq 0.0000 R Bar Sq 0.0000 F 0, 11 NC
D.W.(1) 2.5927 D.W.(2) 2.0366

FEMALES - MARRIED SPOUSE PRESENT NO OWN CHILDREN UNDER AGE 6

```
PF2024MSNC6_P = ( 0.79421 - 0.00087 * RF2024-0.00099 * RF2024.1-0.00063 * RF2024.2-0.00007 * RF2024.3 + 0.00041 * RF2024.4 +
0.00052 * RF2024.5 - B2_2064DI * B1_F2024D * RF2024DI) * 1.0160
    PF2024MSNC6 MAJ
    Ordinary Lēast Squares
    ANNUAL data for 12 periods from 1997 to 2008
    Date: }7\mathrm{ NOV 2009
    pf2024msnc6_maj+b2_2064di*b1_f2024d*rf2024di+(0.00163*movavgf2024)
        = 0.79421
            (102.852)
    Sum Sq 0.0079 Std Err 0.0267 LHS Mean 0.7942
    R Sq 0.0000 R Bar Sq 0.0000 F 0, 11 NC
    D.W.( 1) 1.1263 D.W.( 2) 0.9691
PF2529MSNC6_P = ( 0.83502-0.00056 * RF2529-0.00070 * RF2529.1-0.00057 * RF2529.2-0.00029 * RF2529.3-0.00002 * RF2529.4 + 0.00013 * RF2529.5 - B2_2064DI * B1_F2534D * RF2529DI * 0.9981 PF2529MSNC6_MAJ
```

```
    Ordinary Least Squares
    ANNUAL data for 12 periods from 1997 to 2008
    Date: }7\mathrm{ NOV 2009
    pf2529msnc6_maj+b2_2064di*b1_f2534d*rf2529di+(0.00223*movavgf2529)
    = 0.83502
        (193.893)
\begin{tabular}{lrlrlrr} 
Sum Sq & 0.0024 & Std Err & 0.0149 & LHS Mean & 0.8350 \\
R Sq & -0.0000 & R Bar Sq & -0.0000 & F 0,11 & NC
\end{tabular}
D.W.( 1) 1.4523 D.W.( 2) 0.6163 
PF3034MSNC6_P = (0.80379 - 0.00081 * RF3034-0.00065 * RF3034.1 + 0.00005 * RF3034.2 + 0.00089 * RF3034.3 + 0.00143 * RF3034.4
+ 0.00128 * RF3034.5 - B2_2064DI * B1_F2534D * RF3034DI) * 0.9980
    PF3034MSNC6_MAJ
    Ordinary Lēast Squares
    ANNUAL data for 12 periods from 1997 to 2008
    Date: }7\mathrm{ NOV 2009
    pf3034msnc6_maj+b2_2064di*b1_f2534d*rf3034di-(0.00219*movavgf3034)
        = 0.80379
        (157.883)
    Sum Sq 0.0034 Std Err 0.0176 LHS Mean 0.8038
    R Sq 0.0000 R Bar Sq 0.0000 F 0, 11 NC
    D.W.( 1) 0.8444 D.W.( 2) 1.2470
PF3539MSNC6_P = (0.80906 - 0.00195 * RF3539-0.00216 * RF3539.1-0.00128 * RF3539.2 + 0.00002 * RF3539.3 + 0.00111 * RF3539.4 +
0.00132 * RF3539.5 - B2_2064DI * B1_F3544D * RF3539DI) * 0.9989
    PF3539MSNC6_MAJ
    Ordinary Lēeast Squares
    ANNUAL data for 12 periods from 1997 to 2008
    Date: }7\mathrm{ NOV 2009
    pf3539msnc6_maj+b2_2064di*b1_f3544d*rf3539di+(0.00294*movavgf3539)
        = 0.80906
        (272.016)
    Sum Sq 0.0012 Std Err 0.0103 LHS Mean 0.8091
    R Sq -0.0000 R Bar Sq -0.0000 F 0, 11 NC
    D.W.( 1) 0.9588 D.W.( 2) 1.7718
PF4044MSNC6_P = (0.82602-0.00026 * RF4044-0.00050 * RF4044.1-0.00068 * RF4044.2-0.00076 * RF4044.3-0.00070 * RF4044.4 -
0.00046 * RF4044.5 - B2_2064DI * B1_F3544D * RF4044DI) * 0.9989
    PF4044MSNC6_MAJ
    Ordinary Least Squares
    ANNUAL data for 12 periods from 1997 to 2008
    Date: }7\mathrm{ NOV 2009
    pf4044msnc6_maj+b2_2064di*b1_f3544d*rf4044di+(0.00336*movavgf4044)
        = 0.82602
        (410.094)
    Sum Sq 0.0005 Std Err 0.0070 LHS Mean 0.8260
    R Sq 0.0000 R Bar Sq 0.0000 F 0, 11 NC
    D.W.( 1) 1.4267 D.W.( 2) 2.0136
```


FEMALES - MARRIED SPOUSE ABSENT WITH AT LEAST 1 OWN CHILD UNDER AGE 6

```
PF2024MAC6U_P = ( 0.95787 - 0.00087 * RF2024-0.00099 * RF2024.1 - 0.00063 * RF2024.2 - 0.00007 * RF2024.3 + 0.00041 * RF2024.4 +
0.00052 * RF2024.5 - B2_2064DI * B1_F2024D * RF2024DI - 0.16722 * IF2024MAC6U) * 1.0160
    PF2024MAC6U MAJ
    Ordinary Lēast Squares
    ANNUAL data for 12 periods from 1997 to 2008
    Date: }7\mathrm{ NOV 2009
    pf2024mac6u_maj+b2_2064di*b1_f2024d*rf2024di+(0.00163*movavgf2024)
        = - 0.16722 * if2024mac6u + 0.95787
            (0.98479) (3.96975)
    Sum Sq 0.0237 Std Err 0.0487 LHS Mean 0.7206
    R Sq 0.0884 R Bar Sq -0.0028 F 1, 10 0.9698
    D.W.( 1) 1.8725 D.W.( 2) 2.5264
PF2529MAC6U_P = ( 0.90653-0.00056 * RF2529-0.00070 * RF2529.1-0.00057 * RF2529.2-0.00029 * RF2529.3 - 0.00002 * RF2529.4 +
0.00013 * RF2529.5 - B2_2064DI * B1_F2534D * RF2529DI - 0.10000 * IF2529MAC6U) * 0.9981
    PF2529MAC6U_MAJ
    Ordinary Least Squares
    ANNUAL data for 12 periods from 1997 to 2008
    Date: }7\mathrm{ NOV 2009
    pf2529mac6u_maj+b2_2064di*b1_f2534d*rf2529di+0.1*if2529mac6u+
    (0.00223*movavgf2529)
        = 0.90653
            (91.9140)
    Sum Sq 0.0128 Std Err 0.0342 LHS Mean 0.9065
    R Sq 0.0000 R Bar Sq 0.0000 F 0, 11 NC
    D.W.( 1) 1.2658 D.W.( 2) 1.9769
PF3034MAC6U_P = ( 0.88071 - 0.00081 * RF3034-0.00065 * RF3034.1 + 0.00005 * RF3034.2 + 0.00089 * RF3034.3 + 0.00143 * RF3034.4
+ 0.00128 * RF3034.5-B2_2064DI * B1_F2534D * RF3034DI - 0.10000 * IF3034MAC6U) * 0.9980
    PF3034MAC6U MAJ
    Ordinary Least Squares
    ANNUAL data for 12 periods from 1997 to 2008
    Date: }7\mathrm{ NOV 2009
    pf3034mac6u_maj+b2_2064di*b1_f2534d*rf3034di+0.1*if3034mac6u-
    (0.00219*mov
        = 0.88071
        (85.6422)
    Sum Sq 0.0140 Std Err 0.0356 LHS Mean 0.8807
    R Sq 0.0000 R Bar Sq 0.0000 F 0, 11 NC
    D.W.( 1) 1.1334 D.W.( 2) 1.0452
```

PF3539MAC6U_P $=(0.90258-0.00195 *$ RF3539 - 0.00216 * RF3539.1-0.00128 * RF3539.2 + 0.00002 * RF3539.3 + 0.00111 * RF3539.4
+0.00132 * RF3539.5-B2_2064DI * B1_F3544D * RF3539DI - 0.10000 * IF3539MAC6U) * 0.9989
PF3539MAC6U MAJ
Ordinary Least Squares
ANNUAL data for 12 periods from 1997 to 2008
Date: 7 NOV 2009

```
pf3539mac6u_maj+b2_2064di*b1_f3544d*rf3539di+0.1*if3539mac6u+
(0.00294*mov
    = 0.90258
        (90.1282)
Sum Sq 0.0132 Std Err 0.0347 LHS Mean 0.9026
R Sq -0.0000 R Bar Sq -0.0000 F 0, 11 NC
D.W.( 1) 1.7297 D.W.( 2) 1.8179
```

PF4044MAC6U_P $=(0.89876-0.00026$ * RF4044-0.00050 * RF4044.1-0.00068 * RF4044.2-0.00076 * RF4044.3-0.00070 * RF4044.4 0.00046 * RF4044.5-B2_2064DI * B1_F3544D * RF4044DI - 0.10000 * IF4044MAC6U) * 0.9989

PF4044MAC6U_MAJ
Ordinary Least Squares ANNUAL data for 12 periods from 1997 to 2008 Date: 7 NOV 2009

```
        pf4044mac6u maj+b2 2064di*b1 f3544d*rf4044di+0.1*if4044mac6u+
```

 (0.00336*movavgf4044)
 \(=0.89876\)
 (51.9091)
 | Sum Sq | 0.0396 | Std Err | 0.0600 | LHS Mean | 0.8988 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| R Sq | 0.0000 | R Bar Sq | 0.0000 | F | |

R Sq 0.0000 R Bar Sq 0.0000 F 0,11 NC
D.W.(1) 1.3740 D.W.(2) 1.4527

FEMALES - MARRIED SPOUSE ABSENT NO OWN CHILDREN UNDER AGE 6

```
PF2024MANC6_P = ( 0.75174 - 0.00087 * RF2024-0.00099 * RF2024.1 - 0.00063 * RF2024.2 - 0.00007 * RF2024.3 + 0.00041 * RF2024.4 +
0.00052 * RF2024.5 - B2_2064DI * B1_F2024D * RF2024DI * 1.0160
    PF2024MANC6 MAJ
    Ordinary L\overline{east Squares}
    ANNUAL data for 12 periods from 1997 to 2008
    Date: }7\mathrm{ NOV 2009
    pf2024manc6_maj+b2_2064di*b1_f2024d*rf2024di+(0.00163*movavgf2024)
            = 0.75174
                    (36.5819)
    Sum Sq 0.0557 Std Err 0.0712 LHS Mean 0.7517
    R Sq 0.0000 R Bar Sq 0.0000 F 0, 11 NC
    D.W.( 1) 1.2773 D.W.( 2) 1.2901
PF2529MANC6_P = ( 0.82060-0.00056 * RF2529-0.00070 * RF2529.1-0.00057 * RF2529.2-0.00029 * RF2529.3-0.00002 * RF2529.4 +
0.00013 * RF2529.5 - B2_2064DI * B1_F2534D * RF2529DI) * 0.9981
    PF2529MANC6_MAJ
        Ordinary Lēast Squares
        ANNUAL data for 12 periods from 1997 to 2008
        Date: }7\mathrm{ NOV 2009
        pf2529manc6_maj+b2_2064di*b1_f2534d*rf2529di+(0.00223*movavgf2529)
            = 0.82060
                        (106.580)
```

Sum Sq	0.0078	Std Err	0.0267	LHS Mean	0.8206	
R Sq	-0.0000	R Bar Sq	-0.0000	F 0,11	NC	
D.W.(1)	1.0693	D.W. (2)	1.4430			

```
PF3034MANC6_P = ( 0.83806 - 0.00081 * RF3034-0.00065 * RF3034.1 + 0.00005 * RF3034.2 + 0.00089 * RF3034.3 + 0.00143 * RF3034.4
+ 0.00128 * RF3034.5 - B2_2064DI * B1_F2534D * RF3034DI) * 0.9980
    PF3034MANC6 MAJ
        Ordinary Least Squares
        ANNUAL data for 12 periods from 1997 to 2008
        Date: }7\mathrm{ NOV 2009
        pf3034manc6_maj+b2_2064di*b1_f2534d*rf3034di-(0.00219*movavgf3034)
            = 0.83806
                (139.142)
\begin{tabular}{lrllllr} 
Sum Sq & 0.0048 & Std Err & 0.0209 & LHS Mean & 0.8381 \\
R Sq & 0.0000 & R Bar Sq & 0.0000 & F 0, 11 & NC
\end{tabular}
    D.W.( 1) 1.1221 D.W.( 2) 1.3141
```

PF3539MANC6_P $=(0.86613-0.00195 *$ RF3539 - 0.00216 * RF3539.1-0.00128 * RF3539.2 + 0.00002 * RF3539.3 + 0.00111 * RF3539.4
+0.00132 * RF3539.5 - B2_2064DI * B1_F3544D * RF3539DI) * 0.9989
PF3539MANC6_MAJ
Ordinary Lēast Squares
ANNUAL data for 12 periods from 1997 to 2008
Date: 7 NOV 2009
pf3539manc6_maj+b2_2064di*b1_f3544d*rf3539di+(0.00294*movavgf3539)
$=0.86613$
(351.138)
Sum Sq 0.0008 Std Err 0.0085 LHS Mean 0.8661
R Sq 0.0000 R Bar Sq 0.0000 F 0, 11 NC
D.W. (1) 1.5170 D.W. (2) 2.4012
PF4044MANC6_P $=(0.85937-0.00026$ * RF4044-0.00050 * RF4044.1-0.00068 * RF4044.2-0.00076 * RF4044.3-0.00070 *RF4044.4 -
0.00046 * RF4044.5-B2_2064DI * B1_F3544D * RF4044DI) * 0.9989
PF4044MANC6_MAJ
Ordinary Lēast Squares
ANNUAL data for 12 periods from 1997 to 2008
Date: 7 NOV 2009
pf4044manc6_maj+b2_2064di*b1_f3544d*rf4044di+(0.00336*movavgf4044)
$=0.85937$
(318.503)
Sum Sq 0.0010 Std Err 0.0093 LHS Mean 0.8594
R Sq 0.0000 R Bar Sq 0.0000 F 0,11 NC
$\begin{array}{llll}\text { D.W. (1) } & 1.2467 & \text { D.W. (2) } & 1.8874\end{array}$

LABOR FORCE PARTICIPATION RATES BYMARITAL STATUS (PRELIMINARY)
PF2024NM_P $=($ PF2024NMC6U_P * NF2024NMC6U + PF2024NMNC6_P * NF2024NMNC6) / NF2024NM
PF2024MS_P = (PF2024MSC6U_P * NF2024MSC6U + PF2024MSNC6_P * NF2024MSNC6) / NF2024MS

```
PF2024MA_P = (PF2024MAC6U_P * NF2024MAC6U + PF2024MANC6_P * NF2024MANC6) / NF2024MA
PF2529NM_P = (PF2529NMC6U_P * NF2529NMC6U + PF2529NMNC6_P * NF2529NMNC6) / NF2529NM
PF2529MS_P = (PF2529MSC6U_P * NF2529MSC6U + PF2529MSNC6_P * NF2529MSNC6) / NF2529MS
PF2529MA_P = (PF2529MAC6U_P * NF2529MAC6U + PF2529MANC6_P * NF2529MANC6) / NF2529MA
PF3034NM_P = (PF3034NMC6U_P * NF3034NMC6U + PF3034NMNC6_P * NF3034NMNC6) / NF3034NM
PF3034MS_P = (PF3034MSC6U_P * NF3034MSC6U + PF3034MSNC6_P * NF3034MSNC6) / NF3034MS
PF3034MA_P = (PF3034MAC6U_P * NF3034MAC6U + PF3034MANC6_P * NF3034MANC6) / NF3034MA
PF3539NM_P = (PF3539NMC6U_P * NF3539NMC6U + PF3539NMNC6_P * NF3539NMNC6) / NF3539NM
PF3539MS P = (PF3539MSC6U_P * NF3539MSC6U + PF3539MSNC6_P * NF3539MSNC6) / NF3539MS
PF3539MA_P = (PF3539MAC6U_P * NF3539MAC6U + PF3539MANC6_P * NF3539MANC6) / NF3539MA
PF4044NM_P = (PF4044NMC6U_P * NF4044NMC6U + PF4044NMNC6_P * NF4044NMNC6) / NF4044NM
PF4044MS P = (PF4044MSC6U P * NF4044MSC6U + PF4044MSNC6 P * NF4044MSNC6) / NF4044MS
PF4044MA_P = (PF4044MAC6U_P * NF4044MAC6U + PF4044MANC6_P * NF4044MANC6) / NF4044MA
```

AGE 45 TO 54

FEMALES - NEVER MARRIED 45 TO 54

PF4549NM_P $=0.03650+$ PF4549E_DE $-0.00076 *$ RF4549-0.00070 * RF4549.1-0.00018 * RF4549.2 + $0.00049 *$ RF4549.3 + $0.00096 *$ RF4549.4 + 0.00091 * RF4549.5-B2_2064DI * B1_F4554D * RF4549DI

PLF4549NM

Ordinary Least Squares
ANNUAL data for 15 periods from 1997 to 2008
Date: 7 NOV 2009
plf4549nm+b2_2064di*b1_f4554d*rf4549di-(0.00072*(rf4549+rf4549.1)/2)
-pf4549e_de
$=0.03650$
(13.0077)

| Sum Sq | 0.0010 | Std Err | 0.0097 | LHS Mean | 0.0365 |
| :--- | ---: | :--- | ---: | :--- | ---: | ---: |
| R Sq | -0.0000 | R Bar Sq | -0.0000 | F 0, 11 | NC | F 0, 11

D.W.(1) 1.0546 D.W.(2) 1.4590

PF5054NM_P $=0.05788+$ PF5054E_DE $+0.00003 *$ RF5054-0.00011 * RF5054.1-0.00032 * RF5054.2-0.00051 *RF5054.3-0.00059 *
RF5054.4-0.00045 * RF5054.5-B2_2064DI * B1_F4554D * RF5054DI
PLF5054NM
Ordinary Least Squares
ANNUAL data for 15 periods from 2002 to 2008
Date: 7 NOV 2009
plf5054nm+b2 2064di*b1 f4554d*rf5054di+(0.00195*(rf5054+rf5054.1)/2)
-pf5054e_de
$=0.05788$
(38.3113)

| Sum Sq | $0.0001 \quad$ Std Err | $0.0040 \quad$ LHS Mean 0.0579 |
| :--- | :--- | :--- | :--- | :--- | :--- |

R Sq 0.0000 R Bar Sq 0.0000 F 0, 6 NC
D.W. (1) 3.1637 D.W. (2) 0.7955

FEMALES - MARRIED SPOUSE PRESENT 45 TO 54

```
PF4549MS_P = 0.03842 + PF4549E_DE - 0.00076 * RF4549-0.00070 * RF4549.1-0.00018 * RF4549.2 + 0.00049 * RF4549.3 + 0.00096 *
RF4549.4 + 0.00091 * RF4549.5 - B2_2064DI * B1_F4554D * RF4549DI - 0.15 * RF4549MSCU6
    PLF4549MS 
    ANNUAL data for 12 periods from 1997 to 2008
    Date: }7\mathrm{ NOV 2009
    plf4549ms+b2 2064di*b1 f4554d*rf4549di-(0.00072*(rf4549+rf4549.1)/2)
    +0.15*rf4549mscu6-pf4549e_de
            = 0.03842
                    (31.6040)
    Sum Sq 0.0002 Std Err 0.0042 LHS Mean 0.0384
    R Sq 0.0000 R Bar Sq 0.0000 F 0, 11 NC
    D.W.( 1) 1.2060 D.W.( 2) 2.1805
```

PF5054MS_P $=-0.40180+$ PF5054E_DE +0.00003 * RF5054-0.00011 * RF5054.1-0.00032 * RF5054.2-0.00051 * RF5054.3-0.00059 *
RF5054.4-0.00045 * RF5054.5 + 0.00454 * TR_PF5054MS - B2_2064DI * B1_F4554D * RF5054DI - 0.12 * RF5054MSCU6
PLF5054MS
ANNUAL data for 8 periods from 2002 to 2008
plf5054ms+b2_2064di*b1_f4554d*rf5054di+(0.00195*(rf5054+rf5054.1)/2)
+0.12*rf5054mscu6-pf5054e de
$=0.00454$ * year -0.40180
(5.45138) (4.59712)

Sum Sq	0.0001	Std Err	0.0044	LHS Mean	0.0746	
R Sq	0.8560	R Bar Sq	0.8272	F $1, ~ 5$	29.7175	
D.W.(1)	2.8597	D.W.(2)	1.3228			

FEMALES - MARRIED SPOUSE ABSENT 45 TO 54

PF4549MA_P $=0.06830+$ PF4549E_DE - 0.00076 * RF4549-0.00070 * RF4549.1-0.00018 * RF4549.2 + 0.00049 * RF4549.3 + 0.00096 * RF4549.4 + 0.00091 * RF4549.5-B2_2064DI * B1_F4554D * RF4549DI - 0.1 * RF4549MACU6 PLF4549MA
Ordinary Least Squares
ANNUAL data for 12 periods from 1997 to 2008
Date: 7 NOV 2009
plf4549ma+b2_2064di*b1_f4554d*rf4549di+0.1*rf4549macu6-(0.00072*
(rf4549+rf45 $\overline{4} 9.1$)/2) -p $\bar{f} 4549 e _d e$
$=0.06830$
(22.7782)

Sum Sq 0.0012 Std Err 0.0104 LHS Mean 0.0683
R Sq -0.0000 R Bar Sq -0.0000 F 0,11 NC
D.W.(1) 0.4904 D.W.(2) 0.6582

PF5054MA_P $=0.08983+$ PF5054E_DE $+0.00003 *$ RF5054-0.00011 * RF5054.1-0.00032 * RF5054.2-0.00051 * RF5054.3-0.00059 * RF5054.4-0.00045 * RF5054.5-B2_2064DI * B1_F4554D * RF5054DI - 0.2 * RF5054MACU6

$$
\begin{aligned}
& \text { PLF5054MA } \\
& \text { Ordinary Least Squares }
\end{aligned}
$$

```
ANNUAL data for 12 periods from 2002 to 2008
Date: }7\mathrm{ NOV 2009
plf5054ma+b2 2064di*b1 f4554d*rf5054di+0.2*rf5054macu6+(0.00195*
(rf5054+rf50554.1)/2)-p\overline{f}5054e_de
    = 0.08983
        (31.6098)
\begin{tabular}{llllllr} 
Sum Sq & 0.0003 & Std Err & 0.0075 & LHS Mean & 0.0898 \\
R Sq & 0.0000 & R Bar Sq & 0.0000 & F & 0, & 6
\end{tabular}
D.W.( 1) 0.7619 D.W.( 2) 1.1327
```

AGE 20 TO 54

```
PF2024_P = (PF2024NM_P * NF2024NM + PF2024MS_P * NF2024MS + PF2024MA_P * NF2024MA) / NF2024
PF2529_P = (PF2529NM_P * NF2529NM + PF2529MS_P * NF2529MS + PF2529MA_P * NF2529MA) / NF2529
PF3034_P = (PF3034NM_P * NF3034NM + PF3034MS_P * NF3034MS + PF3034MA_P * NF3034MA) / NF3034
PF3539_P = (PF3539NM_P * NF3539NM + PF3539MS_P * NF3539MS + PF3539MA_P * NF3539MA) / NF3539
PF4044_P = (PF4044NM_P * NF4044NM + PF4044MS_P * NF4044MS + PF4044MA_P * NF4044MA) / NF4044
PF4549_P = (PF4549NM_P * NF4549NM + PF4549MS_P * NF4549MS + PF4549MA_P * NF4549MA) / NF4549
PF5054_P = (PF5054NM_P * NF5054NM + PF5054MS_P * NF5054MS + PF5054MA_P * NF5054MA) / NF5054
```

PF2024 = PF2024_P
PF2529 = PF2529_P
PF3034 $=$ PF3034 P
PF3539 = PF3539_P
PF4044 = PF4044 P
PF4549 = PF4549_P
PF5054 = PF5054_P

FINAL EQUATIONS

```
PF2024NM = PF2024NM_P * PF2024 / PF2024_P
PF2529NM = PF2529NM_P * PF2529 / PF2529_P
PF3034NM = PF3034NM_P * PF3034 / PF3034_P
PF3539NM = PF3539NM_P * PF3539 / PF3539_P
PF4044NM = PF4044NM_P * PF4044 / PF4044_P
PF4549NM = PF4549NM_P * PF4549 / PF4549_P
PF5054NM = PF5054NM_P * PF5054 / PF5054_P
PF2024MS = PF2024MS_P * PF2024 / PF2024_P
PF2529MS = PF2529MS_P * PF2529 / PF2529_P
PF3034MS = PF3034MS_P * PF3034 / PF3034_P
PF3539MS = PF3539MS_P * PF3539 / PF3539_P
PF4044MS = PF4044MS P * PF4044 / PF4044 P
PF4549MS = PF4549MS_P * PF4549 / PF4549_P
PF5054MS = PF5054MS_P * PF5054 / PF5054_P
PF2024MA = PF2024MA_P * PF2024 / PF2024_P
PF2529MA = PF2529MA_P * PF2529 / PF2529_P
PF3034MA = PF3034MA_P * PF3034 / PF3034_P
PF3539MA = PF3539MA_P * PF3539 / PF3539_P
PF4044MA = PF4044MA_P * PF4044 / PF4044_P
PF4549MA = PF4549MA_P * PF4549 / PF4549_P
PF5054MA = PF5054MA_P * PF5054 / PF5054_P
```

PF2024NMC6U = PF2024NMC6U_P * PF2024 / PF2024_P

```
PF2529NMC6U = PF2529NMC6U_P * PF2529 / PF2529_P
PF3034NMC6U = PF3034NMC6U_P * PF3034 / PF3034_P
PF3539NMC6U = PF3539NMC6U_P * PF3539 / PF3539_P
PF4044NMC6U = PF4044NMC6U_P * PF4044 / PF4044_P
PF2024NMNC6 = PF2024NMNC6_P * PF2024 / PF2024_P
PF2529NMNC6 = PF2529NMNC6_P * PF2529 / PF2529_P
PF3034NMNC6 = PF3034NMNC6_P * PF3034 / PF3034_P
PF3539NMNC6 = PF3539NMNC6_P * PF3539 / PF3539_P
PF4044NMNC6 = PF4044NMNC6_P * PF4044 / PF4044_P
PF2024MSC6U = PF2024MSC6U_P * PF2024 / PF2024_P
PF2529MSC6U = PF2529MSC6U_P * PF2529 / PF2529_P
PF3034MSC6U = PF3034MSC6U_P * PF3034 / PF3034_P
PF3539MSC6U = PF3539MSC6U_P * PF3539 / PF3539_P
PF4044MSC6U = PF4044MSC6U P * PF4044 / PF4044 P
PF2024MSNC6 = PF2024MSNC6_P * PF2024 / PF2024_P
PF2529MSNC6 = PF2529MSNC6_P * PF2529 / PF2529_P
PF3034MSNC6 = PF3034MSNC6_P * PF3034 / PF3034_P
PF3539MSNC6 = PF3539MSNC6_P * PF3539 / PF3539_P
PF4044MSNC6 = PF4044MSNC6_P * PF4044 / PF4044_P
PF2024MAC6U = PF2024MAC6U_P * PF2024 / PF2024_P
PF2529MAC6U = PF2529MAC6U_P * PF2529 / PF2529_P
PF3034MAC6U = PF3034MAC6U_P * PF3034 / PF3034_P
PF3539MAC6U = PF3539MAC6U_P * PF3539 / PF3539_P
PF4044MAC6U = PF4044MAC6U_P * PF4044 / PF4044_P
PF2024MANC6 = PF2024MANC6_P * PF2024 / PF2024_P
PF2529MANC6 = PF2529MANC6_P * PF2529 / PF2529 P
PF3034MANC6 = PF3034MANC6_P * PF3034 / PF3034_P
PF3539MANC6 = PF3539MANC6 P * PF3539 / PF3539 P
PF4044MANC6 = PF4044MANC6_P * PF4044 / PF4044_P
```

AGE 55 TO 61

```
PF55 = - B1 F5559D * B2 2064DI * RF55DI + 0.00064 * RF5559 + 0.00041 * RF5559.1-0.00029 * RF5559.2 - 0.00107 * RF5559.3 -
0.00155 * RF5559.4-0.00132 * RF5559.5 + PF55E_DE + PF55_DM + 0.00368 * PF55COH48-0.90941
    PF55
    Ordinary Least Squares
    ANNUAL data for 15 periods from 1994 to 2008
    Date: 18 NOV 2009
    pf55_adj+b1_f5559d*b2_2064di*rf55di+0.00318*(rf5559+rf5559.1)/2-
    pf55e_de-d09a:pf55_dm
        = 0.00368* pf55coh48 - 0.90941
        (3.77468) (9.31588)
    Sum Sq 0.0019 Std Err 0.0119 LHS Mean -0.5411
    R Sq 0.5229 R Bar Sq 0.4862 F 1, 13 14.2482
    D.W.( 1) 1.0397 D.W.( 2) 1.6408
```

PF56 = - B1_F5559D * B2_2064DI * RF56DI + 0.00064 * RF5559 + 0.00041 * RF5559.1-0.00029 * RF5559.2 - 0.00107 * RF5559.3 -
0.00155 * RF5559.4-0.00132 * RF5559.5 + PF56E_DE + PF56_DM + 0.00486 * PF56COH48-0.96865
PF56
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 18 NOV 2009

```
pf56_adj+b1_f5559d*b2_2064di*rf56di+0.00318*(rf5559+rf5559.1)/2-
pf56e__de-d0\overline{9a}:pf56_dm
    = 0.00486* pf56coh48-0.96865
        (4.70516) (9.34013)
\begin{tabular}{lllllll} 
Sum Sq & 0.0025 & Std Err & 0.0140 & LHS Mean & -0.4810 \\
R Sq & 0.6300 & R Bar Sq & 0.6016 & F 1,13 & 22.1385
\end{tabular}
D.W.( 1) 0.9310 D.W.( 2) 1.2475
```

PF57 = - B1_F5559D * B2_2064DI * RF57DI + 0.00064 * RF5559 + 0.00041 * RF5559.1-0.00029 * RF5559.2 - 0.00107 * RF5559.3 -
0.00155 * RF5559.4-0.00132 * RF5559.5 + PF57E_DE + PF57_DM + 0.00344 * PF57COH48-0.85033
PF57
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 18 NOV 2009
pf57_adj+b1_f5559d*b2_2064di*rf57di+0.00318*(rf5559+rf5559.1)/2-
$p f 57 \bar{e} _d e-d 0 \overline{9} a: p f 57 _d m$
$\left.\begin{array}{rl}0.00344 \\ (4.24608)\end{array} * \operatorname{pf57coh} 48-0.85033\right)$
Sum Sq 0.0018 Std Err 0.0119 LHS Mean -0.5044
R Sq 0.5810 R Bar Sq $0.5488 \quad F \quad 1,1318.0292$
D.W. (1) 2.0633 D.W. (2) .
PF58 = - B1_F5559D * B2_2064DI * RF58DI + 0.00064 * RF5559 + 0.00041 * RF5559.1-0.00029 * RF5559.2 - 0.00107 * RF5559.3 -
0.00155 * RF5559.4-0.00132 * RF5559.5 + PF58E_DE + PF58_DM + 0.00362 * PF58COH48-0.83081
PF58
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 18 NOV 2009
pf58_adj+b1_f5559d*b2_2064di*rf58di+0.00318*(rf5559+rf5559.1)/2-
pf58e_de-d0 $\overline{9} a: p f 58$ _dm
$=0.00362 * \mathrm{pf} 58 \operatorname{coh} 48-0.83081$
(6.73964) (15.3264)
Sum Sq 0.0009 Std Err 0.0084 LHS Mean -0.4658
$\begin{array}{lllllll}\text { R Sq } & 0.7775 & \text { R Bar Sq } 0.7604 & \mathrm{~F} & 13 & 13.4228\end{array}$
D.W. (1) 2.5327 D.W. (2) 2.8198

PF59 = - B1_F5559D * B2_2064DI * RF59DI + 0.00064 * RF5559 + 0.00041 * RF5559.1-0.00029 * RF5559.2 - 0.00107 * RF5559.3 0.00155 * RF5559.4-0.00132 * RF5559.5 + PF59E_DE + PF59_DM + 0.00470 * PF59COH48 - 0.85665 PF59
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 18 NOV 2009
pf59_adj+b1_f5559d*b2_2064di*rf59di+0.00318*(rf5559+rf5559.1)/2-pf59e_de-d0 $\overline{9} a: p f 59 _d m$
$=0.00470 * \mathrm{pf} 59 \operatorname{coh} 48-0.85665$
(6.04743) (10.8998)

Sum Sq 0.0021 Std Err 0.0127 LHS Mean -0.3818
$\begin{array}{llllllll}R & 0.7378 & \text { R Bar Sq } 0.7176 \quad \text { F } & 13 & 36.5714\end{array}$
D.W.(1) 1.4831 D.W.(2) 1.9926

```
PF60 = - B1_F6064D * B2_2064DI * RF60DI + 0.00141 * RF6064 + 0.00166 * RF6064.1 + 0.00116 * RF6064.2 + 0.00033 * RF6064.3 -
0.00041 * RF6064.4-0.00066 * RF6064.5 + PF60E_DE + PF60_DM + 0.00819 * PF60COH48 - 1.18744
    PF60
    Ordinary Least Squares
    ANNUAL data for 15 periods from 1994 to 2008
    Date: 18 NOV 2009
    pf60_adj+b1_f6064d*b2_2064di*rf60di-0.00349*(rf6064+rf6064.1)/2-
    pf60e de-d09}a:pf60 dm
        = 0.00819 * pf60coh48 - 1.18744
                (13.9257) (19.9841)
    Sum Sq 0.0013 Std Err 0.0098 LHS Mean -0.3607
    R Sq 0.9372 R Bar Sq 0.9323 F 1, 13 193.925
    D.W.( 1) 2.1311 D.W.( 2) 1.7547
PF61 = - B1_F6064D * B2_2064DI * RF61DI + 0.00141 * RF6064 + 0.00166 * RF6064.1 + 0.00116 * RF6064.2 + 0.00033 * RF6064.3 -
0.00041 * RF6064.4-0.00066 * RF6064.5 + PF61E_DE + PF61_DM + 0.00520 * PF61COH48 - 0.87850
    PF61
    Ordinary Least Squares
    ANNUAL data for 15 periods from 1994 to 2008
    Date: 18 NOV 2009
    pf61_adj+b1_f6064d*b2_2064di*rf61di-0.00349*(rf6064+rf6064.1)/2-
    pf61e_de-d09a:pf61_dm
        = 0.00520 * pf61coh48 - 0.87850
        (5.74368) ( 9.6049)
\begin{tabular}{lllllll} 
Sum Sq & 0.0030 & Std Err & 0.0151 & & LHS Mean & -0.3536 \\
R Sq & 0.7173 & R Bar Sq & 0.6956 & F & 1,13 & 32.9899
\end{tabular}
```

AGE 62 TO 74

PF62 = - B1_F6064D * B2_2064DI * RF62DI + 0.00141 * RF6064 + 0.00166 * RF6064.1 + 0.00116 * RF6064.2 + 0.00033 * RF6064.3 0.00041 * RF6064.4-0.00066 * RF6064.5 + PF62E_DE + PF62_DM + 0.00523 * PF62COH48-0.56287-0.5100 *RRADJ_F62 - 0.02 * POT_ET_TXRT_62

PF62
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 18 NOV 2009
pf62_adj+b1_f6064d*b2_2064di*rf62di-0.00349*(rf6064+rf6064.1)/2+0.51
*rradj_f62+0.02*pot_et_txrt_62-pf62e_de-d09a:pf62_dm
$=0.00523 * \operatorname{pf} 62 \operatorname{coh} 48-0.56287$
(6.34821) (6.75410)
$\begin{array}{llllll}\text { Sum Sq } & 0.0025 & \text { Std Err } & 0.0138 & \text { LHS Mean } & -0.0343 \\ R ~ S q ~ & 0.7561 & \text { R Bar Sq } & 0.7373 & \mathrm{~F} & 13\end{array}$
F 1, 1340.2998
D.W.(1) 1.7531 D.W.(2) 2.4286

PF63 $=$ - B1_F6064D * B2_2064DI * RF63DI $+0.00141 *$ RF6064 + 0.00166 * RF6064.1 + 0.00116 * RF6064.2 + 0.00033 * RF6064.3 0.00041 * RF6064.4-0.00066 * RF6064.5 + PF63E_DE + PF63_DM + 0.00659 * PF63COH48-0.68289-0.4675 *RRADJ_F63-0.02 * POT_ET_TXRT_63

[^22]```
Date: 18 NOV 2009
pf63_adj+b1_f6064d*b2_2064di*rf63di-0.00349*(rf6064+rf6064.1)/2+
0.46\overline{7}}\mp@subsup{5}{}{*}rrad\overline{j}_f63+0.02* pot_et_txrt_63-pf63e_de-d09a:pf63_dm
 = 0.00659 * pf63coh48 - 0.68289
 (9.22934) (9.46029)
\begin{tabular}{lllllll}
Sum Sq & 0.0019 & Std Err & 0.0119 & LHS Mean & -0.0173 \\
R Sq & 0.8676 & R Bar Sq & 0.8574 & F & 1,13 & 85.1806
\end{tabular}
```

PF64 = - B1_F6064D * B2_2064DI * RF64DI $+0.00141 *$ RF6064 + 0.00166 * RF6064.1 + $0.00116 *$ RF6064.2 + $0.00033 *$ RF6064.3
0.00041 * RF6064.4-0.00066 * RF6064.5 + PF64E DE + PF64 DM + 0.00745 * PF64COH48-0.72813-0.4250 *RRADJ F64-0.02 *
POT_ET_TXRT_64
PF64
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 18 NOV 2009
pf64_adj+b1_f6064d*b2_2064di*rf64di-0.00349*(rf6064+rf6064.1)/2+
$0.42 \overline{5} * r r a d j \_f 64+0.02 *$ pot_et_txrt_64-pf64e_de-d09a:pf64_dm
$=0.00745 * \operatorname{pf} 64 \operatorname{coh} 48-0.72813$
(8.28211) (8.00872)
Sum Sq 0.0029 Std Err 0.0150 LHS Mean 0.0242
$\begin{array}{lllllll}\text { R Sq } & 0.8407 & \text { R Bar Sq } & 0.8284 & \mathrm{~F} & 1,13 & 68.5934\end{array}$
D.W.( 1) 1.0198 D.W.( 2) 1.3213
PF65 = - B1_F6569D * B2_2064DI * RF65DI_EFF + 0.00029 * RF6569 + 0.00014 * RF6569.1-0.00023 * RF6569.2 - 0.00063 * RF6569.3 -
0.00086 * RF6569.4-0.00072 * RF6569.5 + PF65E_DE + PF65_DM + 0.00348 * PF65COH48-0.37490-0.3825 * RRADJ_F65-0.02 *
POT_ET_TXRT_65
PF65
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 18 NOV 2009
pf65_adj+0.00201*(rf6569+rf6569.1)/2+0.3825*rradj_f65+0.02*
pot_èt_txrt_65-pf65e_de-d09a:pf65_dm
$=0.00348 * \mathrm{pf} 65 \operatorname{coh} 48-0.37490$
(3.59639) (3.82708)

| Sum Sq | 0.0034 | Std Err | 0.0162 | LHS Mean | -0.0229 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| R Sq | 0.4987 | R Bar Sq | 0.4602 | F 1,13 | 12.9340 |  |
| D.W.( 1) | 0.8931 | D.W.( 2) | 1.5475 |  |  |  |

PF66 $=$ - B1_F6569D * B2_2064DI * RF66DI_EFF +0.00029 * RF6569 + 0.00014 * RF6569.1-0.00023 * RF6569.2 - 0.00063 * RF6569.3 0.00086 * RF6569.4-0.00072 * RF6569.5 + PF66E_DE + PF66_DM + 0.00512 * PF66COH48-0.52851-0.3400 *RRADJ_F66 - 0.02 * POT_ET_TXRT_66

```
PF66
 Ordinary Least Squares
 ANNUAL data for 15 periods from 1994 to 2008
 Date: 18 NOV 2009
 pf66_adj+0.00201*(rf6569+rf6569.1)/2+0.34*rradj_f66+0.02*
 pot_\overline{e}t_txrt_66-pf66e_de-d09a:pf66_dm
 = 0.00512* pf66coh48-0.52851
 (6.49443) (6.63217)
 Sum Sq 0.0023 Std Err 0.0132 LHS Mean -0.0114
```

```
 R Sq 0.7644 R Bar Sq 0.7463 F 1, 13 42.1776
 D.W.(1) 0.9621 D.W.(2) 2.0946
PF67 = 0.00029 * RF6569 + 0.00014 * RF6569.1-0.00023 * RF6569.2 - 0.00063 * RF6569.3-0.00086 * RF6569.4 - 0.00072 * RF6569.5 +
PF67E_DE + PF67_DM + 0.00518 * PF67COH48-0.53735-0.2975 * RRADJ_F67 - 0.02 * POT_ET_TXRT_67
 PF67
 Ordinary Least Squares
 ANNUAL data for 15 periods from 1994 to 2008
 Date: 18 NOV 2009
 pf67 adj+0.00201*(rf6569+rf6569.1)/2+0.2975*rradj f67+0.02*
 pot_et_txrt_67-pf67e_de-d09a:pf67_dm
 = 0.00518* pf67coh48 - 0.53735
 (5.22734) (5.36828)
 Sum Sq 0.0036 Std Err 0.0166 LHS Mean -0.0146
 R Sq 0.6776 R Bar Sq 0.6528 F 1, 13 27.3250
 D.W.(1) 0.7870 D.W.(2) 1.5420
PF68 = 0.00029 * RF6569 + 0.00014 * RF6569.1-0.00023 * RF6569.2-0.00063 * RF6569.3-0.00086 * RF6569.4 - 0.00072 * RF6569.5 +
PF68E_DE + PF68_DM + 0.00400 * PF68COH48-0.41046-0.2550 * RRADJ_F68 - 0.02 * POT_ET_TXRT_68
 PF68
 Ordinary Least Squares
 ANNUAL data for 15 periods from 1994 to 2008
 Date: 18 NOV 2009
 pf68_adj+0.00201*(rf6569+rf6569.1)/2+0.255*rradj_f68+0.02*
 pot_èt_txrt_68-pf68e_de-d09a:pf68_dm-0.004*pf68coh48
 = - 0.41046
 (108.710)
\begin{tabular}{lrlrlrr}
Sum Sq & 0.0030 & Std Err & 0.0146 & LHS Mean & -0.4105 \\
R Sq & -0.0000 & R Bar Sq & -0.0000 & F 0,14 & NC \\
D.W. (1) & 0.7062 & D.W.(2) & 1.1088 & & &
\end{tabular}
PF69 = 0.00029 * RF6569 + 0.00014 * RF6569.1-0.00023 * RF6569.2-0.00063 * RF6569.3-0.00086 * RF6569.4-0.00072 * RF6569.5 + PF69E_DE + PF69_DM + 0.00400 * PF69COH48-0.36706-0.2550 * RRADJ_F69-0.02 * POT_ET_TXRT_69 PF69
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 18 NOV 2009
pf69_adj+0.00201*(rf6569+rf6569.1)/2+0.255*rradj_f69+0.02*
pot_ēt_txrt_69-pf69e_de-d09a:pf69_dm-0.004*pf69cōh48
\(=-0.36706\)
(98.8825)
\begin{tabular}{llllllr}
Sum Sq & 0.0029 & Std Err & 0.0144 & LHS Mean & -0.3671 \\
R Sq & 0.0000 & R Bar Sq & 0.0000 & F 0, 14 & NC
\end{tabular}
D.W.(1) 0.9091 D.W.(2) 1.1132
PF70 \(=-0.00009\) * RF7074-0.00028 * RF7074.1-0.00048 * RF7074.2-0.00063 * RF7074.3-0.00064 * RF7074.4-0.00046 * RF7074.5 + PF70E_DE + PF70_DM + 0.00424 * PF70COH48-0.49282
PF70
Ordinary Least Squares
ANNUAL data for 15 periods from 1994 to 2008
Date: 18 NOV 2009
pf70_adj+0.00258*(rf7074+rf7074.1)/2-pf70e_de-d09a:pf70_dm
```

```
 = 0.00424 * pf70coh48 - 0.49282
 (7.83319) (9.00853)
 Sum Sq 0.0011 Std Err 0.0091 LHS Mean -0.0647
\begin{tabular}{llllllll}
R Sq & 0.8252 & R Bar Sq & 0.8117 & F & 13 & 61.3589
\end{tabular}
PF71 = - 0.00009 * RF7074-0.00028 * RF7074.1-0.00048 * RF7074.2-0.00063 * RF7074.3-0.00064 * RF7074.4-0.00046 * RF7074.5 +
PF71E_DE + PF71_DM + 0.00300 * PF71COH48-0.37390
 PF71
 Ordinary Least Squares
 ANNUAL data for 15 periods from 1994 to 2008
 Date: 18 NOV 2009
 pf71_adj+0.00258*(rf7074+rf7074.1)/2-pf71e_de-d09a:pf71_dm-0.003*
 pf71coh48
 = - 0.37390
 (129.175)
\begin{tabular}{llllllr}
Sum Sq & 0.0018 & Std Err & 0.0112 & LHS Mean & -0.3739 \\
R Sq & 0.0000 & R Bar Sq & 0.0000 & F & 0,14 & NC
\end{tabular}
PF72 = - 0.00009 * RF7074-0.00028 * RF7074.1-0.00048 * RF7074.2 - 0.00063 * RF7074.3-0.00064 * RF7074.4-0.00046 * RF7074.5 +
PF72E DE + PF72 DM + 0.00286 * PF72COH48 - 0.34670
 PF72
 Ordinary Least Squares
 ANNUAL data for 15 periods from 1994 to 2008
 Date: 18 NOV 2009
 pf72_adj+0.00258*(rf7074+rf7074.1)/2-pf72e_de-d09a:pf72_dm
 = 0.00286 * pf72coh48 - 0.34670
 (4.76520) (5.71954)
\begin{tabular}{lllllll}
Sum Sq & 0.0013 & Std Err & 0.0100 & LHS Mean & -0.0581 \\
R Sq & 0.6359 & R Bar Sq & 0.6079 & F 1, 13 & 22.7071
\end{tabular}
D.W.(1) 2.3870 D.W.(2) 1.8950
PF73 = - 0.00009 * RF7074-0.00028 * RF7074.1-0.00048 * RF7074.2 - 0.00063 * RF7074.3-0.00064 * RF7074.4-0.00046 * RF7074.5 +
PF73E_DE + PF73_DM + 0.00370 * PF73COH48-0.41058
 PF73
 Ordinary Least Squares
 ANNUAL data for 15 periods from 1994 to 2008
 Date: 18 NOV 2009
 pf73_adj+0.00258*(rf7074+rf7074.1)/2-pf73e_de-d09a:pf73_dm
 = 0.00370* pf73coh48 - 0.41058
 (7.43111) (8.16624)
 Sum Sq 0.0009 Std Err 0.0083 LHS Mean -0.0373
 R Sq 0.8094 R Bar Sq 0.7948 F 1, 13 55.2214
 D.W.(1) 1.7723 D.W.(2) 1.9443
PF74 = - 0.00009 * RF7074-0.00028 * RF7074.1-0.00048 * RF7074.2 - 0.00063 * RF7074.3-0.00064 * RF7074.4 - 0.00046 * RF7074.5 +
PF74E_DE + PF74_DM + 0.00304 * PF74COH48-0.35113
 PF74
 Ordinary Least Squares
 ANNUAL data for 15 periods from 1994 to 2008
 Date: 18 NOV 2009
```

```
pf74_adj+0.00258*(rf7074+rf7074.1)/2-pf74e_de-d09a:pf74_dm
 = 0.00304* pf74coh48-0.35113
 (6.28948) (7.18186)
Sum Sq 0.0009 Std Err 0.0081 LHS Mean -0.0439
R Sq 0.7527 R Bar Sq 0.7336 F 1, 13 39.5576
D.W.(1) 1.7882 D.W.(2) 1.6804
```

AGE 75 TO 79

```
PF75 = PF74.4 * 0.900 + DPF75O_FE
PF76 = PF75.4 * 0.900 + DPF75O_FE
PF77 = PF76.4 * 0.900 + DPF75O FE
PF78 = PF77.4 * 0.900 + DPF75O_FE
PF79 = PF78.4 * 0.900 + DPF75O_FE
```

AGE 80 AND OVER

```
PF80_P = PF79.4 * 0.965**(1) + DPF75O_FE
PF81 P = PF79.8 * 0.965** (2) + DPF75O FE
PF82_P = PF79.12 * 0.965**(3) + DPF75O_FE
PF83_P = PF79.16 * 0.965**(4) + DPF75O_FE
PF84_P = PF79.20 * 0.965**(5) + DPF75O_FE
PF85_P = MOVAVG(8,PF79.24) * 0.965**(6) + DPF75O_FE
PF86_P = MOVAVG(8,PF79.28) * 0.965**(7) + DPF75O_FE
PF87_P = MOVAVG(8,PF79.32) * 0.965**(8) + DPF75O_FE
PF88_P = MOVAVG(8,PF79.36) * 0.965**(9) + DPF75O_FE
PF89_P = MOVAVG(8,PF79.40)*0.965**(10) + DPF75O_FE
PF90_P = MOVAVG(8,PF79.44) * 0.965**(11) + DPF75O_FE
PF91_P = MOVAVG(8,PF79.48) * 0.965**(12) + DPF75O_FE
PF92_P = MOVAVG(8,PF79.52) * 0.965**(13) + DPF75O_FE
PF93_P = MOVAVG(8,PF79.56) * 0.965**(14) + DPF75O_FE
PF94_P = MOVAVG(8,PF79.60) * 0.965**(15) + DPF75O_FE
PF95_P = PF94_P * 0.965 + DPF75O_FE
PF96_P = PF95_P * 0.965 + DPF75O_FE
PF97_P = PF96_P * 0.965 + DPF75O FE
PF98_P = PF97_P * 0.965 + DPF75O_FE
PF99 P = PF98 P * 0.965 + DPF75O FE
PF100_P = PF99_P * 0.965 + DPF75O_FE
```

PF80O_P $=($ PF80_P*NF80 + PF81_P*NF81 + PF82_P*NF82 + PF83_P*NF83 + PF84_P*NF84 + PF85_P*NF85 + PF86_P*NF86 +
PF87_P*NF87 + PF88_P*NF88 + PF89_P*NF89 + PF90_P*NF90 + PF91_P*NF91 + PF92_P*NF92 + PF93_P*NF93 +
PF94_P*NF94 + PF95_P*NF95 + PF96_P*NF96 + PF97_P*NF97 + PF98_P*NF98 + PF99_P*NF99 + PF100_P*NF100) / NF800
PF800 $=$ PF80O_P
PF80 $=$ PF80_P $*$ PF800 $/$ PF80O_P
PF81 = PF81_P * PF800 / PF80O_P
PF82 $=$ PF82_P $*$ PF800 $/$ PF800_P
PF83 $=$ PF83_P * PF800 / PF80O_P
PF84 $=$ PF84_P * PF800 / PF80O_P
PF85 $=$ PF85_P $*$ PF800 $/$ PF800_P
PF86 $=$ PF86_P * PF80O / PF80O_P

```
PF87 = PF87_P * PF80O / PF80O_P
PF88 = PF88_P * PF800 / PF80O_P
PF89 = PF89_P * PF800 / PF80O_P
PF90 = PF90_P * PF800 / PF80O_P
PF91 = PF91_P * PF800 / PF800_P
PF92 = PF92_P * PF800 / PF80O_P
PF93 = PF93_P * PF800 / PF800_P
PF94 = PF94_P * PF800 / PF80O_P
PF95 = PF95_P * PF800 / PF80O_P
PF96 = PF96_P * PF80O / PF80O_P
PF97 = PF97_P * PF80O / PF80O_P
PF98 = PF98_P * PF800 / PF80O_P
PF99 = PF99_P * PF800 / PF80O_P
PF100 = PF100_P * PF800 / PF80O_P
```


## LABOR FORCE PARTICIPATION RATES, FULL EMPLOYMENT

## MALE LFPR EQUATIONS, FULL EMPLOYMENT

DPM1617_FE $=(-0.00158$ * RM1617_FE - 0.00180 * RM1617_FE. $1-0.00115$ * RM1617_FE. 2 - 0.00014 * RM1617_FE. 3 + 0.00072 * RM1617_FE. $4+0.00094$ * RM1617_FE.5) - (- 0.00158 * RM1617-0.00180 * RM1617.1-0.00115 * RM1617.2-0.00014 * RM1617.3 + 0.00072 * RM1617.4 + 0.00094 * RM1617.5)

```
Restricted Ordinary Least Squares
 QUARTERLY data for 148 periods from 1971Q1 to 2007Q4
 Date: 2 SEP 2009
 pm1617_dpk
 = - 0.00158 * rm1617_dpk - 0.00180 * rm1617_dpk[-1]
 (5.56270) (6.13183)
 -0.00115 * rm1617_dpk[-2] - 0.00014 * rm1617_dpk[-3]
 (7.49261) (0.94429)
 + 0.00072 * rm1617_dpk[-4] + 0.00094 * rm1617_dpk[-5]
 (2.47378) (3.30450)
 Polynomial lags:
 rm1617 dpk
 from 0- to 5 degree 3 near far
 Sum Sq 0.0343 Std Err 0.0149 LHS Mean -0.0011 Res Mean 0.0037
 R Sq 0.2826 R Bar Sq 0.2777 F 2,146 28.7598 %RMSE 46265.0
 D.W.(1) 0.3942 D.W.(4) 0.9128
```

DPM1819_FE $=(-0.00108 *$ RM1819_FE - $0.00127 *$ RM1819_FE. $1-0.00088$ * RM1819_FE. $2-0.00023$ * RM1819_FE. 3 + 0.00034 *
RM1819_FE. $4+0.00053$ * RM1819_FE.5) - (- 0.00108 * RM1819-0.00127 * RM1819.1-0.00088 * RM1819.2 - 0.00023 * RM1819.3 +
0.00034 * RM1819.4 + 0.00053 * RM1819.5)
Restricted Ordinary Least Squares
QUARTERLY data for 148 periods from $1971 Q 1$ to 2007Q4
Date: 2 SEP 2009

```
pm1819_dpk
 = - 0.00108 * rm1819_dpk - 0.00127 * rm1819_dpk[-1]
 (5.22267) (5.94236)
 - 0.00088 * rm1819_dpk[-2] - 0.00023 * rm1819_dpk[-3]
 (7.96365) (2.16526)
 + 0.00034 * rm1819_dpk[-4] + 0.00053 * rm1819_dpk[-5]
 (1.61951) (2.56002)
Polynomial lags:
rm1819_dpk
from 0 to 5 degree 3 near far
\begin{tabular}{lllllllr}
Sum Sq & 0.0192 & Std Err & 0.0114 & LHS Mean & -0.0040 & Res Mean & 0.0008 \\
R Sq & 0.2729 & R Bar Sq & 0.2679 & F 2,146 & 27.3976 & \%RMSE & 17596.7 \\
D.W.(1) & 0.7981 & D.W. (4) & 1.2825 & & & &
\end{tabular}
```

DPM2024_FE $=(-0.00063$ * RM2024_FE - 0.00077 * RM2024_FE. $1-0.00059$ * RM2024_FE. $2-0.00027$ * RM2024_FE. 3 + 0.00005 * RM2024_FE. $4+0.00020$ * RM2024_FE.5) - (- 0.00063 * RM2024-0.00077 * RM2024.1-0.00059 * RM2024.2-0.00027 * RM2024.3 + 0.00005 * RM2024.4 + 0.00020 * RM2024.5)

Restricted Ordinary Least Squares
QUARTERLY data for 148 periods from 1971Q1 to 2007Q4
Date: 2 SEP 2009
pm2024_dpk
$=-0.00063 *$ rm2024_dpk -0.00077 * rm2024_dpk[-1] (4.32837) (5.14659)

- 0.00059 * rm2024_dpk[-2] - 0.00027 * rm2024_dpk[-3] (7.47597) (3.39844) +0.00005 * rm2024_dpk[-4] + 0.00020 * rm2024_dpk[-5] (0.35674) (1.36468)

Polynomial lags:
rm2024_dpk
from $0^{-}$to 5 degree 3 near far

| Sum Sq | 0.0067 | Std Err | 0.0068 | LHS Mean | -0.0028 | Res Mean | -0.0002 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| R Sq | 0.2336 | R Bar Sq | 0.2284 | F 2,146 | 22.2560 | \%RMSE | 32980.5 |

DPM2529_FE $=(-0.00028 *$ RM2529_FE - $0.00044 *$ RM2529_FE. $1-0.00050 *$ RM2529_FE. $2-0.00047$ * RM2529_FE. $3-0.00037$ * RM2529_FE. 4-0.00021 * RM2529_FE.5) - (- 0.00028 * RM2529-0.00044 * RM2529.1-0.00050 * RM2529.2 - 0.00047 * RM2529.3 0.00037 * RM2529.4-0.00021 * RM2529.5)

$$
\begin{aligned}
& \text { Restricted Ordinary Least Squares } \\
& \text { QUARTERLY data for } 101 \text { periods from 1982Q4 to 2007Q4 } \\
& \text { Date: } 2 \text { SEP } 2009 \\
& \text { pm2529_dpk } \\
& =-0.00028 * \text { rm2529_dpk }-0.00044 \text { * rm2529_dpk[-1] } \\
& \text { (1.40609) (2.14232) } \\
& \text { - } 0.00050 \text { * rm2529_dpk[-2] - } 0.00047 \text { * rm2529_dpk[-3] } \\
& \text { (4.60340) (4.70117) }
\end{aligned}
$$

```
 - 0.00037 * rm2529_dpk[-4] - 0.00021 * rm2529_dpk[-5]
 (1.87119) (1.06920)
Polynomial lags:
 rm2529 dpk
 from 0- to 5 degree 3 near far
\begin{tabular}{lrlllllll}
Sum Sq & 0.0026 & Std Err & 0.0049 & LHS Mean & -0.0033 & Res Mean & -0.0016 \\
R Sq & 0.0492 & R Bar Sq & 0.0396 & F 2, 99 & 2.5598 & \%RMSE & 48872.7 \\
D.W.(1) & 0.7362 & D.W. 4 (\()\) & 1.0116 & & & & &
\end{tabular}
```

DPM3034_FE $=(-0.00046 *$ RM3034_FE $-0.00061 *$ RM3034_FE. $1-0.00054$ * RM3034_FE. $2-0.00036$ * RM3034_FE. 3 - 0.00014 * RM3034_FE. $4+0.00001$ * RM3034_FE.5) - (- 0.00046 * RM3034-0.00061 * RM3034.1-0.00054 * RM3034.2-0.00036 * RM3034.30.00014 * RM3034.4 + 0.00001 * RM3034.5)

```
Restricted Ordinary Least Squares
 QUARTERLY data for 101 periods from 1982Q4 to 2007Q4
 Date: 2 SEP 2009
 pm3034_dpk
 = - 0.00046 * rm3034_dpk - 0.00061 * rm3034_dpk[-1]
 (1.81713) (2.34240)
 - 0.00054 * rm3034_dpk[-2] - 0.00036 * rm3034_dpk[-3]
 (4.05252) (2.76527)
 - 0.00014 * rm3034_dpk[-4] + 0.00001 * rm3034_dpk[-5]
 (0.56353) (0.02760)
 Polynomial lags:
 rm3034_dpk
 from 0- to 5 degree 3 near far
 Sum Sq 0.0024 Std Err 0.0049 LHS Mean -0.0015 Res Mean -0.0001
 R Sq 0.1497 R Bar Sq 0.1411 F 2, 99 8.7134 %RMSE 50015.8
 D.W.(1) 0.6227 D.W.(4) 0.8678
```

DPM3539_FE $=(-0.00004 *$ RM3539_FE $-0.00010 *$ RM3539_FE. $1-0.00016 *$ RM3539_FE. $2-0.00021 *$ RM3539_FE. $3-0.00021$ *
RM3539_FE. $4-0.00015$ * RM3539_FE.5) - (- 0.00004 * RM3539-0.00010 * RM3539.1-0.00016 * RM3539.2 - 0.00021 * RM3539.3 -
0.00021 * RM3539.4-0.00015 * RM3539.5)

```
Restricted Ordinary Least Squares
 QUARTERLY data for }101\mathrm{ periods from 1982Q4 to 2007Q4
 Date: 2 SEP 2009
```

    pm3539_dpk
        \(=-0.00004 *\) rm3539_dpk -0.00010 * rm3539_dpk[-1]
            (0.12650) (0.32986)
            - 0.00016 * rm3539 dpk[-2] - 0.00021 * rm3539 dpk[-3]
                (1.10007) (1.48792)
                - 0.00021 * rm3539_dpk[-4] - 0.00015 * rm3539_dpk[-5]
                (0.72412) (0.51868)
    Polynomial lags:
            rm3539_dpk
            from 0 to 5 degree 3 near far
    | Sum Sq | 0.0028 | Std Err | 0.0052 | LHS Mean | -0.0017 | Res Mean | -0.0010 |  |
| :--- | ---: | :--- | ---: | :--- | ---: | ---: | ---: | ---: |
| R Sq | -0.0664 | R Bar Sq | -0.0772 | F 2, 99 | NC | \%RMSE | 1817.43 |  |
| D.W.( 1) | 0.4246 | D.W.( 4) | 0.5372 |  |  |  |  |  |

DPM4044_FE $=(-0.00057$ * RM4044_FE - 0.00066 * RM4044_FE. $1-0.00044$ * RM4044_FE. $2-0.00009$ * RM4044_FE. 3 + 0.00022 * RM4044_FE. $4+0.00031$ * RM4044_FE.5) - (- 0.00057 * RM4044-0.00066 * RM4044.1-0.00044 * RM4044.2-0.00009 * RM4044.3 + 0.00022 * RM4044.4 + 0.00031 * RM4044.5)

```
Restricted Ordinary Least Squares
 QUARTERLY data for 101 periods from 1982Q4 to 2007Q4
 Date: 2 SEP 2009
 pm4044_dpk
 = - 0.00057 * rm4044_dpk - 0.00066 * rm4044_dpk[-1]
 (1.75853) - (1.97180)
 -0.00044 * rm4044_dpk[-2] - 0.00009 * rm4044_dpk[-3]
 (2.56550) (0.54915)
 + 0.00022 * rm4044_dpk[-4] + 0.00031 * rm4044_dpk[-5]
 (0.66426) (0.95499)
 Polynomial lags:
 rm4044 dpk
 from 0 to 5 degree 3 near far
 Sum Sq 0.0029 Std Err 0.0054 LHS Mean -0.0012 Res Mean -0.0004
 R Sq 0.0268 R Bar Sq 0.0170 F 2, 99 1.3647 %RMSE 310.335
 D.W.(1) 0.5028 D.W.(4) 0.7333
```

DPM4549_FE $=(-0.00002 *$ RM4549_FE - $0.00016 *$ RM4549_FE. $1-0.00034$ * RM4549_FE. $2-0.00049$ * RM4549_FE. 3 - 0.00054 * RM4549_FE. $4-0.00040$ * RM4549_FE.5) - (- 0.00002 * RM4549-0.00016 * RM4549.1-0.00034 * RM4549.2-0.00049 * RM4549.3 0.00054 * RM4549.4-0.00040 * RM4549.5)

Restricted Ordinary Least Squares
QUARTERLY data for 101 periods from 1982Q4 to 2007 Q4
Date: 2 SEP 2009
pm4549_dpk
$=-\underset{(0.06650)}{0.0002}$ * rm4549_dpk-0.00016 * rm4549_dpk[-1] (0.06650) (0.55897)

- 0.00034 * rm4549_dpk[-2] - 0.00049 * rm4549_dpk[-3] (2.31789) (3.39192)
- 0.00054 * rm4549_dpk[-4] - 0.00040 * rm4549_dpk[-5] (1.92566) (1.46813)

Polynomial lags:
rm4549_dpk
from $0^{-}$to 5 degree 3 near far

| Sum Sq | 0.0015 | Std Err | 0.0039 | LHS Mean | -0.0013 | Res Mean | -0.0003 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| R Sq | 0.0719 | R Bar Sq | 0.0625 | F 2, 99 | 3.8350 | \%RMSE | 4821.60 |  |
| D.W.( 1) | 0.7819 | D.W. ( 4) | 1.0968 |  |  |  |  |  |

DPM5054_FE $=(0.00112 *$ RM5054_FE $+0.00103 *$ RM5054_FE. $1+0.00023 *$ RM5054_FE. $2-0.00078 *$ RM5054_FE. $3-0.00149 *$ RM5054_FE. $4-0.00139$ * RM5054_FE.5) - ( 0.00112 * RM5054 + 0.00103 * RM5054.1 + 0.00023 * RM5054.2 - 0.00078 * RM5054.3 0.00149 * RM5054.4-0.00139 * RM5054.5)

Restricted Ordinary Least Squares

```
QUARTERLY data for }101\mathrm{ periods from 1982Q4 to 2007Q4
Date: 2 SEP 2009
pm5054_dpk
 = 0.00112 * rm5054_dpk + 0.00103 * rm5054_dpk[-1]
 (3.16181) (2.84569)
 + 0.00023 * rm5054_dpk[-2] - 0.00078 * rm5054_dpk[-3]
 (1.30991) (4.52791)
 - 0.00149 * rm5054_dpk[-4] - 0.00139 * rm5054_dpk[-5]
 (4.15166) (3.96094)
Polynomial lags:
 rm5054 dpk
 from 0- to 5 degree 3 near far
\begin{tabular}{lrllllll}
Sum Sq & 0.0037 & Std Err & 0.0061 & LHS Mean & -0.0012 & Res Mean & 0.0001 \\
R Sq & 0.1417 & R Bar Sq & 0.1330 & F 2, 99 & 8.1732 & \%RMSE & 42597.0 \\
D.W.(1) & 1.0445 & D.W. (4) & 1.5173 & & & &
\end{tabular}
```

DPM5559_FE $=(0.00062 *$ RM5559_FE + 0.00041 * RM5559_FE. $1-0.00026$ * RM5559_FE.2-0.00101 * RM5559_FE. 3 - 0.00147 * RM5559_FE. $4-0.00126$ * RM5559_FE.5) - ( 0.00062 * RM5559 + 0.00041 * RM5559.1-0.00026 * RM5559.2 - 0.00101 * RM5559.3 0.00147 * RM5559.4-0.00126 * RM5559.5)

```
Restricted Ordinary Least Squares
 QUARTERLY data for 101 periods from 1982Q4 to 2007Q4
 Date: 2 SEP 2009
 pm5559_dpk
 = (1.23508) 0.00062 * rm5559_dpk + 0.00041 * rm5559_dpk[-1]
 -0.00026 * rm5559_dpk[-2] - 0.00101 * rm5559_dpk[-3]
 (1.02810) (4.16786)
 - 0.00147 * rm5559_dpk[-4] - 0.00126 * rm5559_dpk[-5]
 (2.91432) (2.53301)
 Polynomial lags:
 rm5559 dpk
 from 0 to 5 degree 3 near far
 Sum Sq 0.0066 Std Err 0.0080 LHS Mean -0.0037 Res Mean -0.0014
 R Sq 0.0164 R Bar Sq 0.0065 F 2, 99 0.8277 %RMSE 256947
 D.W.(1) 0.8793 D.W.(4) 1.2992
```

DPM6064_FE $=(0.00203$ * RM6064_FE + 0.00160 * RM6064_FE. $1-0.00021$ * RM6064_FE. 2 - 0.00235 * RM6064_FE. 3 - 0.00374 * RM6064_FE. $4-0.00331$ * RM6064_FE.5) - ( 0.00203 * RM6064 + 0.00160 * RM6064.1-0.00021 * RM6064.2 - 0.00235 * RM6064.3 0.00374 * RM6064.4-0.00331 * RM6064.5)

```
Restricted Ordinary Least Squares
 QUARTERLY data for }101\mathrm{ periods from 1982Q4 to 2007Q4
 Date: 2 SEP 2009
 pm6064_dpk
 = 0.00203 * rm6064_dpk + 0.00160 * rm6064_dpk[-1]
 (2.66008) (2.03611)
 - 0.00021 * rm6064 dpk[-2] - 0.00235 * rm6064 dpk[-3]
```

$$
\begin{aligned}
& \text { (0.51861) (5.71949) } \\
& -\underset{(4.77362)}{-0.00374 * r m 6064 \_d p k[-4]-0.00331 * r m 6064 \_d p k[-5]}
\end{aligned}
$$

Polynomial lags:
rm6064 dpk
from $0^{-}$to 5 degree 3 near far

| Sum Sq | 0.0165 | Std Err | 0.0110 | LHS Mean | -0.0095 | Res Mean | -0.0067 |  |
| :--- | ---: | :--- | ---: | :--- | ---: | ---: | ---: | ---: |
| R Sq | -0.2740 | R Bar Sq | -0.2869 | F 2, 99 | NC | \%RMSE | 21316.0 |  |
| D.W. ( 1) | 0.5297 | D.W. ( 4) | 0.7821 |  |  |  |  |  |

DPM6569_FE $=(0.00067$ * RM6569_FE + 0.00040 * RM6569_FE. $1-0.00040$ * RM6569_FE. 2 - 0.00127 * RM6569_FE. 3 - 0.00178 * RM6569_FE. $4-0.00151$ * RM6569_FE.5) - ( 0.00067 * RM6569 + 0.00040 * RM6569.1-0.00040 * RM6569.2-0.00127 * RM6569.3 0.00178 * RM6569.4-0.00151 * RM6569.5)

```
Restricted Ordinary Least Squares
QUARTERLY data for 101 periods from \(1982 Q 4\) to 2007Q4
Date: 2 SEP 2009
pm6569_dpk
 \(=0.00067 *\) rm6569_dpk +0.00040 * rm6569_dpk[-1]
 (0.93838) (0.52443)
 - 0.00040 * rm6569_dpk[-2] - 0.00127 * rm6569_dpk[-3]
 (0.89477) (2.96224)
 - 0.00178 * rm6569_dpk[-4] - 0.00151 * rm6569_dpk[-5]
 (2.41737) (2.13109)
Polynomial lags:
 rm6569 dpk
 from \(0^{-}\)to 5 degree 3 near far
\begin{tabular}{lrlrlrrrr}
Sum Sq & 0.0210 & Std Err & 0.0138 & LHS Mean & -0.0059 & Res Mean & -0.0047 \\
R Sq & -0.0832 & R Bar Sq & -0.0942 & F 2, 99 & NC & \%RMSE & 36465.0
\end{tabular}
D.W. (1) 0.5122 D.W. (4) 0.7034
```

DPM7074_FE $=(-0.00013 *$ RM7074_FE - 0.00016 * RM7074_FE. $1-0.00013$ * RM7074_FE. $2-0.00006$ * RM7074_FE. 3 + 0.00000 * RM7074_FE. $4+0.00003$ * RM7074_FE.5) - (- 0.00013 * RM7074-0.00016 * RM7074.1-0.00013 * RM7074.2-0.00006 * RM7074.3 + 0.00000 * RM7074.4 + 0.00003 * RM7074.5)

$$
\begin{aligned}
& \text { Restricted Ordinary Least Squares } \\
& \text { QUARTERLY data for } 101 \text { periods from 1982Q4 to } 2007 \text { Q4 } \\
& \text { Date: } 2 \text { SEP } 2009 \\
& \text { pm7074_dpk } \\
& =-0.00013 * \text { rm7074_dpk }-0.00016 * \text { rm7074_dpk[-1] } \\
& \text { (0.30689) (0.35702) } \\
& -0.00013 \text { * rm7074_dpk[-2] - } 0.00006 \text { * rm7074_dpk[-3] } \\
& \text { (0.44247) (0.21289) } \\
& +0.00000 \text { * rm7074_dpk[-4] + 0.00003 * rm7074_dpk[-5] } \\
& \text { (0.00874) (0.08371) } \\
& \text { Polynomial lags: } \\
& \text { rm7074_dpk } \\
& \text { from } 0^{-} \text {to } 5 \text { degree } 3 \text { near far }
\end{aligned}
$$

| Sum Sq | 0.0114 | Std Err | 0.0080 | LHS Mean | -0.0073 | Res Mean | -0.0071 |  |
| :--- | ---: | :--- | ---: | :--- | ---: | ---: | ---: | ---: |
| R Sq | -0.8795 | R Bar Sq | -0.8984 | F 2, 99 | NC | \%RMSE | 1540.73 |  |
| D.W. ( 1) | 0.5068 | D.W. ( 4) | 0.7160 |  |  |  |  |  |

DPM75O_FE $=(-0.00043 *$ RM75O_FE - 0.00051 * RM75O_FE. $1-0.00036$ * RM75O_FE. $2-0.00010$ * RM75O_FE. 3 + 0.00013 * RM75O_FE. $4+0.00021$ * RM75O_FE.5) - (- 0.00043 * RM75O-0.00051 * RM75O.1-0.00036 * RM75O. $2-0.00010$ * RM75O.3 + 0.00013 * RM75O. 4 + 0.00021 * RM75O.5)

```
Restricted Ordinary Least Squares
 QUARTERLY data for }101\mathrm{ periods from 1982Q4 to 2007Q4
 Date: 2 SEP 2009
 pm75o_dpk
 = - 0.00043 * rm75o_dpk - 0.00051 * rm75o_dpk[-1]
 (1.82379) (2.03996)
 -0.00036 * rm750_dpk[-2] - 0.00010 * rm75o_dpk[-3]
 (2.39851) (0.66247)
 + 0.00013 * rm750_dpk[-4] + 0.00021 * rm75o_dpk[-5]
 (0.51659) (0.86124)
 Polynomial lags:
 rm75o dpk
 from 0}\mathrm{ to 5 degree 3 near far
\begin{tabular}{lrlrlrrrr}
Sum Sq & 0.0039 & Std Err & 0.0058 & LHS Mean & -0.0031 & Res Mean & -0.0025 \\
R Sq & -0.2424 & R Bar Sq & -0.2549 & F 2,99 & NC & \%RMSE & 19877.0
\end{tabular}
```


## FEMALE LFPR EQUATIONS, FULL EMPLOYMENT DIFFERENTIALS

```
DPF1617_FE = (-0.00224 * RF1617_FE - 0.00239 * RF1617_FE.1-0.00126 * RF1617_FE.2 + 0.00035 * RF1617_FE. 3 + 0.00163 *
RF1617_FE.4 + 0.00178 * RF1617_FE.5) - (- 0.00224 * RF1617 - 0.00239 * RF1617.1 - 0.00126 * RF1617.2 + 0.00035 * RF1617.3 + 0.00163
* RF1617.4 + 0.00178 * RF1617.5)
 Restricted Ordinary Least Squares
 QUARTERLY data for }148\mathrm{ periods from 1971Q1 to 2007Q4
 Date: 2 SEP 2009
 pf1617_dpk
 = - \underset{(5.90261) 0.00224 * rf1617_dpk - }{(6.13505)}
 -0.00126 * rf1617_dpk[-2] + 0.00035 * rf1617_dpk[-3]
 (6.26010) (1.72973)
 +0.00163 * rf1617_dpk[-4] + 0.00178 * rf1617_dpk[-5]
 (4.17464) (4.69274)
 Polynomial lags:
 rf1617_dpk
 from 0-to 5 degree 3 near far
```

| Sum Sq | 0.0354 | Std Err | 0.0153 | LHS Mean | 0.0006 | Res Mean | 0.0030 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| R Sq | 0.2161 | R Bar Sq | 0.2107 | F 2,146 | 20.1227 | \%RMSE | 28883.0 |
| D.W. ( 1) | 0.4141 | D.W. ( 4) | 0.9322 |  |  |  |  |

DPF1819_FE $=(-0.00124$ * RF1819_FE -0.00147 * RF1819_FE. $1-0.00106$ * RF1819_FE. $2-0.00035$ * RF1819_FE. $3+0.00030$ * RF1819_FE. $4+0.00053$ * RF1819_FE.5) - (- 0.00124 * RF1819-0.00147 * RF1819.1-0.00106 * RF1819.2-0.00035 * RF1819.3 + 0.00030 * RF1819.4 + 0.00053 * RF1819.5)

```
Restricted Ordinary Least Squares
 QUARTERLY data for 148 periods from 1971Q1 to 2007Q4
 Date: 2 SEP 2009
 pf1819_dpk
 = - 0.00124 * rf1819_dpk - 0.00147 * rf1819_dpk[-1]
 (4.35316) (5.03839)
 - 0.00106 * rf1819_dpk[-2] - 0.00035 * rf1819_dpk[-3]
 (7.08785) (2.38461)
 + 0.00030 * rf1819_dpk[-4] + 0.00053 * rf1819_dpk[-5]
 (1.03892) (1.89331)
 Polynomial lags:
 rf1819 dpk
 from 0- to 5 degree 3 near far
\begin{tabular}{lllllllll}
Sum Sq & 0.0217 & Std Err & 0.0120 & LHS Mean & -0.0031 & Res Mean & 0.0021 \\
R Sq & 0.2645 & R Bar Sq & 0.2594 & F 2,146 & 26.2493 & \(\%\) RMSE & 53411.9
\end{tabular}
D.W. (1) 0.8392 D.W. (4) 1.3288 (2) - -
```

DPF2024_FE $=(-0.00087 *$ RF2024_FE $-0.00099 *$ RF2024_FE. $1-0.00063 *$ RF2024_FE. $2-0.00007 *$ RF2024_FE. $3+0.00041 *$ RF2024_FE. $4+0.00052$ * RF2024_FE.5) - ( -0.00087 * RF2024-0.00099 * RF2024.1-0.00063 * RF2024.2 - 0.00007 * RF2024.3 + 0.00041 * RF2024.4 + 0.00052 * RF2024.5)

Restricted Ordinary Least Squares
QUARTERLY data for 148 periods from 1971Q1 to 2007Q4
Date: 2 SEP 2009
pf2024_dpk
$=-0.00087$ * rf2024_dpk - 0.00099 * rf2024_dpk[-1] (1.95040) (2.16369)

- 0.00063 * rf2024_dpk[-2] - 0.00007 * rf2024_dpk[-3] (2.80524) (0.30336) +0.00041 * rf2024_dpk[-4] + 0.00052 * rf2024_dpk[-5] (0.90125) (1.17782)

Polynomial lags:
rf2024_dpk from $0^{-}$to 5 degree 3 near far

| Sum Sq | 0.0212 | Std Err | 0.0120 | LHS Mean | -0.0017 | Res Mean | 0.0002 |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| R Sq | 0.0408 | R Bar Sq | 0.0343 | F 2,146 | 3.1076 | \%RMSE | 51970.8 |

D.W. (1) $0.2424 \quad$ D.W. (4) 0.514

DPF2529_FE $=(-0.00056 *$ RF2529_FE - 0.00070 * RF2529_FE. $1-0.00057$ * RF2529_FE. $2-0.00029$ * RF2529_FE. $3-0.00002$ *
RF2529_FE. $4+0.00013$ * RF2529_FE.5) - (- 0.00056 * RF2529-0.00070 * RF2529.1-0.00057 * RF2529.2-0.00029 * RF2529.3-0.00002 * RF2529.4 + 0.00013 * RF2529.5)

```
Restricted Ordinary Least Squares
 QUARTERLY data for }101\mathrm{ periods from 1982Q4 to 2007Q4
 Date: 2 SEP 2009
 pf2529_dpk
 = - 0.00056 * rf2529_dpk - 0.00070 * rf2529_dpk[-1]
 (0.83571) (1.02414)
 - 0.00057 * rf2529_dpk[-2] - 0.00029 * rf2529_dpk[-3]
 (1.64524) (0.87576)
 - 0.00002 * rf2529_dpk[-4] + 0.00013 * rf2529_dpk[-5]
 (0.02505) (0.19165)
 Polynomial lags:
```

            rf2529_dpk
                from \(0^{-}\)to 5 degree 3 near far
    | Sum Sq | 0.0129 | Std Err | 0.0110 | LHS Mean | 0.0014 | Res Mean | 0.0030 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| R Sq | 0.0265 | R Bar Sq | 0.0167 | F 2, 99 | 1.3467 | $\%$ RMSE | 1908.57 |

    D.W. ( 1) 0.2611 D.W. ( 4) 0.6593
    DPF3034_FE $=(-0.00081$ * RF3034_FE - 0.00065 * RF3034_FE. $1+0.00005$ * RF3034_FE. $2+0.00089$ * RF3034_FE. $3+0.00143$ * RF3034_FE. $4+0.00128$ * RF3034_FE.5) $-(-0.00081$ * RF3034-0.00065 * RF3034.1 + 0.00005 * RF3034.2 + 0.00089 * RF3034.3 + 0.00143 * RF3034.4 + 0.00128 * RF3034.5)

Restricted Ordinary Least Squares
QUARTERLY data for 101 periods from $1982 Q 4$ to 2007 Q 4
Date: 2 SEP 2009
pf3034_dpk
$=-0.00081$ * rf3034_dpk - 0.00065 * rf3034_dpk[-1]
(1.30466) (1.02194)
+0.00005 * rf3034_dpk[-2] + 0.00089 * rf3034_dpk[-3] (0.16121) (2.80112)
+0.00143 * rf3034_dpk[-4] + 0.00128 * rf3034_dpk[-5]
(2.29055) (2.08640)

Polynomial lags:
rf3034 dpk
from 0 to 5 degree 3 near far

| Sum Sq | 0.0083 | Std Err | 0.0088 | LHS Mean | 0.0040 | Res Mean | 0.0026 |
| :--- | ---: | :--- | ---: | :--- | ---: | ---: | ---: | ---: |
| R Sq | -0.1326 | R Bar Sq | -0.1440 | F $2, ~ 99$ | NC | \%RMSE | 29049.2 |

DPF3539_FE $=(-0.00195 *$ RF3539_FE $-0.00216 *$ RF3539_FE. $1-0.00128 *$ RF3539_FE. $2+0.00002 *$ RF3539_FE. $3+0.00111 *$
RF3539_FE. $4+0.00132$ * RF3539_FE.5) $-(-0.00195$ * RF3539-0.00216 * RF3539.1-0.00128 * RF3539.2 + 0.00002 * RF3539. $3+0.00111$

* RF3539.4 + 0.00132 * RF3539.5)

Restricted Ordinary Least Squares
QUARTERLY data for 101 periods from 1982 Q to 2007 Q4
Date: 2 SEP 2009
pf3539_dpk

```
 = - 0.00195 * rf3539_dpk - 0.00216 * rf3539_dpk[-1]
 (2.96355) (3.19201)
 - 0.00128 * rf3539_dpk[-2] + 0.00002 * rf3539_dpk[-3]
 (3.74105) (0.06643)
 + 0.00111 * rf3539_dpk[-4] + 0.00132 * rf3539_dpk[-5]
 (1.67998) (2.03681)
Polynomial lags:
 rf3539 dpk
 from 0-to 5 degree 3 near far
\begin{tabular}{llllllll}
Sum Sq & 0.0079 & Std Err & 0.0089 & LHS Mean & -0.0021 & Res Mean & -0.0007 \\
R Sq & 0.0801 & R Bar Sq & 0.0708 & F 2, 99 & 4.3116 & \%RMSE & 6918.68 \\
D.W.(1) & 0.3914 & D.W. (4) & 0.5620 & & & &
\end{tabular}
```

DPF4044_FE $=(-0.00026 *$ RF4044_FE $-0.00050 *$ RF4044_FE. $1-0.00068 *$ RF4044_FE. $2-0.00076$ * RF4044_FE. 3 - 0.00070 * RF4044_FE. $4-0.00046$ * RF4044_FE.5) - (- 0.00026 * RF4044-0.00050 * RF4044.1-0.00068 * RF4044.2-0.00076 * RF4044.3-0.00070 * RF4044.4-0.00046 * RF4044.5)
Restricted Ordinary Least Squares
QUARTERLY data for 101 periods from $1982 Q 4$ to 2007Q4
Date: 2 SEP 2009
pf4044_dpk
$=-0.00026$ * rf4044_dpk - 0.00050 * rf4044_dpk[-1]
(0.53052) (0.99291)
- 0.00068 * rf4044_dpk[-2] - 0.00076 * rf4044_dpk[-3]
(2.55091) (2.90760)
- 0.00070 * rf4044_dpk[-4] - 0.00046 * rf4044_dpk[-5]
(1.41817) (0.96194)
Polynomial lags:
rf4044 dpk
from $0^{-}$to 5 degree 3 near far

| Sum Sq | 0.0041 | Std Err | 0.0061 | LHS Mean | 0.0005 | Res Mean | 0.0021 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| R Sq | 0.1306 | R Bar Sq | 0.1218 | F 2, 99 | 7.4378 | \%RMSE | 4872.89 |

$\begin{array}{lll}\text { D.W. ( 1) } & 0.5681 & \text { D.W. } \mathrm{D} \text { ( 4) }\end{array}$
○RMSE 4872.89
D.W.( 4) 0.8422教

DPF4549_FE $=(-0.00076$ * RF4549_FE -0.00070 * RF4549 FE. $1-0.00018$ * RF4549 FE. $2+0.00049$ * RF4549 FE. $3+0.00096$ * RF4549_FE. $4+0.00091$ * RF4549_FE.5) - ( -0.00076 * RF4549-0.00070 * RF4549.1-0.00018 * RF4549.2 + 0.00049 * RF4549.3 + 0.00096 * RF4549.4 + 0.00091 * RF4549.5)

```
Restricted Ordinary Least Squares
 QUARTERLY data for 101 periods from 1982Q4 to 2007Q4
 Date: 2 SEP 2009
 pf4549_dpk
 \(=-0.00076\) * rf4549 dpk - 0.00070 * rf4549 dpk[-1]
 (1.20345) (1.08117)
 -0.00018 * rf4549_dpk[-2] + 0.00049 * rf4549_dpk[-3]
 (0.50034) (1.36204)
 +0.00096 * rf4549_dpk[-4] + 0.00091 * rf4549_dpk[-5]
 (1.47572) (1.44905)
```

```
Polynomial lags:
 rf4549_dpk
 from 0 to 5 degree 3 near far
\begin{tabular}{lrlrlrlrl}
Sum Sq & 0.0046 & Std Err & 0.0063 & LHS Mean & 0.0028 & Res Mean & 0.0027 \\
R Sq & -0.1835 & R Bar Sq & -0.1954 & F 2, 99 & NC & \%RMSE & 316691 \\
D.W.(1) & 0.7137 & D.W.(4) & 0.9879 & & & & &
\end{tabular}
```

DPF5054_FE $=(0.00003 *$ RF5054_FE $-0.00011 *$ RF5054_FE. $1-0.00032 *$ RF5054_FE. $2-0.00051 *$ RF5054_FE. $3-0.00059 *$
RF5054_FE. $4-0.00045$ * RF5054_FE.5) - ( 0.00003 * RF5054-0.00011 * RF5054.1-0.00032 * RF5054.2-0.00051 * RF5054.3-0.00059 * RF5054.4-0.00045 * RF5054.5)

| Restricted Ordinary Least Squares |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| QUARTERLY data for 101 periods from 1982 Q4 to 200724 <br> Date: 2 SEP 2009 |  |  |  |  |  |  |  |
| pf5054_dpk |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| $\begin{aligned} -\underset{(1.13804)}{0.00032} \text { * rf5054_dpk[-2] } & -\underset{(1.96823)}{0.00051} * \text { rf5054_dpk[-3] } \end{aligned}$ |  |  |  |  |  |  |  |
| $\begin{aligned} -0.00059 \\ (1.04732) \end{aligned} \quad \text { rf5054_dpk[-4] }-\underset{(0.80816)}{ } 0.00045 * \text { rf5054_dpk[-5] }$ |  |  |  |  |  |  |  |
| Polynomial lags: |  |  |  |  |  |  |  |
| rf5054_dpk |  |  |  |  |  |  |  |
| from $0^{-}$to 5 degree 3 near far |  |  |  |  |  |  |  |
| Sum Sq | 0.0054 | Std Err | 0.0073 | LHS Mean | -0.0004 | Res Mean | 0.0010 |
| R Sq | 0.0704 | R Bar Sq | 0.0611 | F 2, 99 | 3.7511 | \%RMSE | 66278.7 |
| D.W.( 1) | 0.8578 | D.W. ( 4) | 1.1467 |  |  |  |  |

DPF5559_FE $=(0.00064$ * RF5559_FE + 0.00041 * RF5559_FE. $1-0.00029$ * RF5559_FE.2-0.00107 * RF5559_FE. 3 - 0.00155 * RF5559_FE. $4-0.00132$ * RF5559_FE.5) - ( 0.00064 * RF5559 + 0.00041 * RF5559.1-0.00029 * RF5559.2-0.00107 * RF5559.3-0.00155 * RF5559.4-0.00132 * RF5559.5)

| Restricted Ordinary Least Squares QUARTERLY data for 101 periods from 1982Q4 to 2007Q4 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| Date: 2 SEP 2009 |  |  |  |  |  |  |  |
| pf5559_dpk |  |  |  |  |  |  |  |
| $=\underset{(0.89335)}{0.00064} \text { * rf5559_dpk }+\underset{(0.55546)}{0.00041} * \text { rf5559_dpk[-1] }$ |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| $\begin{aligned} -\underset{(2.15075)}{0.00155} * \end{aligned} \text { rf5559_dpk[-4] } \underset{(1.87882)}{-} \underset{(1.00132}{ } \text { * rf5559_dpk[-5] }$ |  |  |  |  |  |  |  |
| Polynomial lags: |  |  |  |  |  |  |  |
| rf5559_dpk |  |  |  |  |  |  |  |
| from 0 to 5 degree 3 near far |  |  |  |  |  |  |  |
| Sum Sq | 0.0102 | Std Err | 0.0102 | LHS Mean | -0.0011 | Res Mean | 0.0005 |
| R Sq | 0.0769 | R Bar Sq | 0.0676 | F 2, 99 | 4.1224 | \%RMSE | 4599.06 |
| D.W. ( 1) | 0.8791 | D.W. ( 4) | 0.8944 |  |  |  |  |

DPF6064_FE $=(0.00141 *$ RF6064_FE $+0.00166 *$ RF6064_FE. $1+0.00116 *$ RF6064_FE. $2+0.00033$ * RF6064_FE. 3 - 0.00041 * RF6064_FE. $4-0.00066$ * RF6064_FE.5) - ( 0.00141 * RF6064 + 0.00166 * RF6064.1 + 0.00116 * RF6064.2 + 0.00033 * RF6064.3 - 0.00041 * RF6064.4-0.00066 * RF6064.5)

| Sum Sq | 0.0113 | Std Err | 0.0105 | LHS Mean | 0.0007 | Res Mean | -0.0017 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| R Sq | 0.1074 | R Bar Sq | 0.0984 | F 2, 99 | 5.9541 | \%RMSE | 8386.58 |  |
| D.W.( 1) | 0.6636 | D.W. ( 4) | 0.8453 |  |  |  |  |  |

DPF6569_FE $=(0.00029 *$ RF6569_FE +0.00014 * RF6569_FE. $1-0.00023$ * RF6569_FE. $2-0.00063$ * RF6569_FE. 3 - 0.00086 * RF6569_FE. $4-0.00072$ * RF6569_FE.5) - ( 0.00029 * RF6569 + 0.00014 * RF6569.1-0.00023 * RF6569.2-0.00063 * RF6569.3-0.00086 * RF6569.4-0.00072 * RF6569.5)

```
 Restricted Ordinary Least Squares
 QUARTERLY data for 101 periods from 1982Q4 to 2007Q4
 Date: 2 SEP 2009
 pf6569_dpk
 = 0.00029 * rf6569_dpk + 0.00014 * rf6569_dpk[-1]
 (0.39369) (0.18572)
 -0.00023 * rf6569_dpk[-2] - 0.00063 * rf6569_dpk[-3]
 (0.46891) (1.29792)
 -0.00086 * rf6569_dpk[-4] - 0.00072 * rf6569_dpk[-5]
 (1.10980) (0.98371)
 Polynomial lags:
 rf6569_dpk
 from 0- to 5 degree 3 near far
\begin{tabular}{lrlrlllll}
Sum Sq & 0.0161 & Std Err & 0.0097 & LHS Mean & -0.0088 & Res Mean & -0.0083 \\
R Sq & -0.8729 & R Bar Sq & -0.8918 & F 2, 99 & NC & \%RMSE & 5935.52 \\
D.W.(1) & 0.3864 & D.W. W 4) & 0.3951 & & & & &
\end{tabular}
```

DPF7074_FE $=(-0.00009 *$ RF7074_FE $-0.00028 *$ RF7074_FE. $1-0.00048 *$ RF7074_FE. $2-0.00063$ * RF7074_FE. 3 - 0.00064 *
RF7074_FE. 4-0.00046 * RF7074_FE.5) - (- 0.00009 * RF7074-0.00028 * RF7074.1-0.00048 * RF7074.2-0.00063 * RF7074.3-0.00064 * RF7074.4-0.00046 * RF7074.5)

Restricted Ordinary Least Squares QUARTERLY data for 101 periods from $1982 Q 4$ to 2007Q4
Date: 2 SEP 2009

```
pf7074_dpk
 = - 0.00009 * rf7074_dpk - 0.00028 * rf7074_dpk[-1]
 (0.41200) (1.18982)
 - 0.00048 * rf7074_dpk[-2] - 0.00063 * rf7074_dpk[-3]
 (3.71663) (4.89240)
 -0.00064 * rf7074_dpk[-4] - 0.00046 * rf7074_dpk[-5]
 (2.78954) (2.06896)
Polynomial lags:
 rf7074_dpk
 from 0 to 5 degree 3 near far
\begin{tabular}{lrlrlrrrr}
Sum Sq & 0.0038 & Std Err & 0.0059 & LHS Mean & -0.0043 & Res Mean & -0.0018 \\
R Sq & -0.1504 & R Bar Sq & -0.1620 & F 2,99 & NC & \(\%\) RMSE & 14566.3 \\
D.W.(1) & 0.7462 & D.W. (4) & 1.0245 & & & &
\end{tabular}
```

DPF75O_FE $=(-0.00007 *$ RF75O_FE $-0.00012 *$ RF75O_FE. $1-0.00015 *$ RF75O_FE. $2-0.00014$ * RF75O_FE. $3-0.00012$ * RF75O_FE. 4 0.00007 * RF75O_FE.5) - (- 0.00007 * RF75O-0.00012 * RF75O.1-0.00015 * RF75O.2-0.00014 * RF75O. $3-0.00012$ * RF75O.4-0.00007 * RF75O.5)

```
Restricted Ordinary Least Squares
 QUARTERLY data for }101\mathrm{ periods from 1982Q4 to 2007Q4
 Date: 2 SEP 2009
 pf75o_dpk
 = - 0.00007 * rf75o_dpk - 0.00012 * rf75o_dpk[-1]
 (0.83244) (1.28137)
 -0.00015 * rf750_dpk[-2] - 0.00014 * rf75o_dpk[-3]
 (2.41595) (2.48652)
 - 0.00012 * rf750_dpk[-4] - 0.00007 * rf75o_dpk[-5]
 (1.27553) (0.79882)
 Polynomial lags:
 rf75o dpk
 from 0 to 5 degree 3 near far
\begin{tabular}{llllllll}
Sum Sq & 0.0008 & Std Err & 0.0028 & LHS Mean & 0.0001 & Res Mean & 0.0004 \\
R Sq & 0.0818 & R Bar Sq & 0.0725 & F 2, 99 & 4.4079 & \%RMSE & 43067.0 \\
D.W.(1) & 0.7531 & D.W. (4) & 1.3841 & & & &
\end{tabular}
D.W.(1) 0.7531 D.W.(4) 1.3841
```


### 2.2 U.S. Earnings (USEAR)

Annual Employment Equations

NonagriculturalWage Workers, Private Household Workers

| EF1617NAWPH = | MAX ( $0.001,-0.20802$ * RTP - 0.40988 * RTP. $1+0.01015+61.2465$ * 1/YEAR - 0.00965 * MINW/CPIW_U + 0.01561 * NU10/NF1617-0.13398) * EF1617 |
| :---: | :---: |
| EF1819NAWPH = | $\begin{aligned} & \text { MAX }(0.001,-0.03363 * \text { RTP - } 0.12989 * \text { RTP. } 1-0.00661+8.44701 * 1 / Y E A R-0.00539 * \text { MINW/CPIW_U + } 0.00345 \\ & * \text { NU10/NF1819 + 0.07597) } \end{aligned}$ |
| EF2024NAWPH = | MAX ( $0.001,-0.18707$ * MOVAVG (5, RTP) $-0.00223+2.12060$ * 1/YEAR + 0.00820 * NU10/NF2024 + 0.14537) * EF2024 |
| EF2534NAWPH = | $\begin{aligned} & \text { MAX }(0.001,0.01874 * \text { RTP }-0.04167 * \text { MOVAVG }(5, \text { RTP.1) }-0.00090+1.55167 * 1 / \text { YEAR }+0.01021 * \\ & \text { NU10/NF2534-0.00170) * EF2534 } \end{aligned}$ |
| EF3544NAWPH = | $\begin{aligned} & (0.00622 * \text { RTP }-0.06062 * \text { MOVAVG }(5, \text { RTP. } 1)+0.00008+0.29372 * \text { MOVAVG }(3, \text { EF2534NAWPH.9/EF2534.9 })+ \\ & 0.06187) * \text { EF3544 } \end{aligned}$ |
| EF4554NAWPH = | $\begin{aligned} & (0.02788 * \text { RTP }-0.10996 * \text { MOVAVG }(5, \text { RTP.1) }-0.00349+0.53068 * \text { MOVAVG }(3, \text { EF3544NAWPH.9/EF3544.9) }+ \\ & 0.08883) * \text { EF4554 } \end{aligned}$ |
| EF5564NAWPH = | $\begin{aligned} & (0.05939 * \text { RTP }-0.10618 * \text { MOVAVG (2, RTP.1) - } 0.00579+0.66195 \text { * MOVAVG (3, EF4554NAWPH.9/EF4554.9) + } \\ & 0.05966) * \text { EF5564 } \end{aligned}$ |
| EF65ONAWPH = | $(0.22642$ * RTP - $0.02069+0.33505$ * MOVAVG (3, EF5564NAWPH.9) - 0.19707) |
| EM1617NAWPH = | MAX (0.001, -0.05284 * RTP - 0.17833 * RTP. $1-0.00768+9.19738 * 1 / Y E A R-0.00588 *$ MINW/CPIW_U + 0.16862) * EM1617 |
| EM1819NAWPH $=$ | $\begin{aligned} & \text { MAX (0.001, }-0.07122 * \text { RTP }-0.03737 * \text { RTP. } 1-0.00282+3.76796 * 1 / Y E A R-0.00499 * \text { MINW/CPIW_U + 0.08727) } \\ & \text { * EM1819 } \end{aligned}$ |
| EM2024NAWPH = | MAX (0.001, -0.00450 * RTP - 0.02345 * RTP.1-0.00113-0.00057 * MINW/CPIW_U + 0.03265) * EM2024 |
| EM2534NAWPH = | MAX (0.001, -0.00490 * RTP.1-0.00054-0.00051 * MINW/CPIW_U + 0.00789) * EM2534 |
| EM3544NAWPH = | (-0.00446 * RTP.1-0.00041-0.00053 * MINW/CPIW_U + 0.00726) * EM3544 |
| EM4554NAWPH = | $(-0.00039+0.00129) *$ EM4554 |
| EM5564NAWPH = | $(-0.00015+0.00200) *$ EM5564 |
| EM65ONAWPH = | $(-0.00679+0.64405$ * MOVAVG (3, EM5564NAWPH.9) +0.00231$)$ |

Nonagricultural Self-employed workers
EF1617NAS $=(0.12015 *$ RTP. $1-0.10551) *$ EF1617
Ordinary Least Squares
ANNUAL data for 5 periods from 2000 to 2004
Date: 9 NOV 2005

ef1617nas/ef1617 $=$| $0.12015 *$ |
| :--- | :--- |
| $(1.96868)$ | rtp. $1-\quad 0.10551$

| Sum Sq | 0.0000 |
| :--- | ---: |
| Std Error | 0.0030 |
| LHS Mean | 0.0142 |
| R-Squared | 0.5637 |
| R Bar Squared | 0.4182 |
| F-stat 1, 3 | 3.8757 |
| D.W. (1) | 1.5620 |
| D.W. (2) | 2.3626 |

EF1819NAS $=(0.11184 *$ RTP. $1-0.10241) *$ EF1819
Ordinary Least Squares
ANNUAL data for 5 periods from 2000 to 2004
Date: 9 NOV 2005

| ef1819nas/ef1819 $=$ | $0.11184 *$ rtp. $1-$ <br> $(2.99537)$ |
| :--- | :--- | | 0.10241 |
| :--- |
| $(2.75170)$ |

Sum Sq 0.0000
Std Error 0.0018
LHS Mean 0.0090
R-Squared 0.7494
R Bar Squared 0.6659
F-STAT 1, 38.9722


| R Bar Squared 0 | 0.6436 |  |  |
| :---: | :---: | :---: | :---: |
| F-STAT 1, 38 | 8.2229 |  |  |
| D.W. (1) 1.7 | 1.7821 |  |  |
| D.W. (2) 2 | 2.7029 |  |  |
| EF5564NAS $=(0.07872 *$ RTP. $1+0.00466) *$ EF5564 |  |  |  |
| Ordinary Least Squares |  |  |  |
| ANNUAL data for 5 periods from 2000 to 2004 |  |  |  |
| Date: 9 NOV 2005 |  |  |  |
| ef5564nas/ef5564 | $64=$ | $\begin{aligned} & 0.07872 * \text { rtp. } 1+ \\ & (1.38159) \end{aligned}$ | $\begin{aligned} & 0.00466 \\ & (0.08196) \end{aligned}$ |
| Sum Sq 0 | 0.0000 |  |  |
| Std Error 0 | 0.0028 |  |  |
| LHS Mean 0. | 0.0831 |  |  |
| R-Squared 0 | 0.3889 |  |  |
| R Bar Squared 0 | 0.1851 |  |  |
| F-STAT 1, 31 | 1.9088 |  |  |
| D.W. (1) 2. | 2.6092 |  |  |
| D.W. (2) 2 | 2.2686 |  |  |
| EF65ONAS $=(0.10940$ * EF6569 + $0.12265 *$ EF7074 $+0.14137 *$ EF75O $)$ |  |  |  |
| Ordinary Least Squares |  |  |  |
| ANNUAL data for 5 periods from 2000 to 2004 |  |  |  |
| Date: 9 NOV 2005 |  |  |  |
| ef6569nas/ef6569 | 69 = | $\begin{aligned} & 0.10940 \\ & (37.7493) \end{aligned}$ |  |
| Sum Sq 0 | 0.0002 |  |  |
| Std Error 0 | 0.0065 |  |  |
| LHS Mean 0 | 0.1094 |  |  |
| R-Squared 0 | 0.0000 |  |  |
| R Bar Squared 0 | 0.0000 |  |  |
| F 0, 4 N | NC |  |  |
| D.W. (1) 3. | 3.0431 |  |  |
| D.W. (2) 1 | 1.2204 |  |  |
| Ordinary Least Squares |  |  |  |
| ANNUAL data for 5 periods from 2000 to 2004 |  |  |  |
| Date: 9 NOV 2005 |  |  |  |
| ef7074nas/ef7074 | $74=$ | $\begin{aligned} & 0.12265 \\ & (16.4939) \end{aligned}$ |  |
| Sum Sq 0 | 0.0011 |  |  |
| Std Error 0.0 | 0.0166 |  |  |
| LHS Mean 0 | 0.1226 |  |  |
| R-Squared 0 | 0.0000 |  |  |
| R Bar Squared 0 | 0.0000 |  |  |
| F 0, 4 N | NC |  |  |
| D.W. (1) 1. | 1.0289 |  |  |
| D.W. (2) 1.7 | 1.7188 |  |  |
| Ordinary Least Squares |  |  |  |
| ANNUAL data for 5 periods from 2000 to 2004 |  |  |  |
| Date: 9 NOV 2005 |  |  |  |
| ef75onas/ef75o | $=0.1$ | $\begin{aligned} & 137 \\ & (17.7500) \end{aligned}$ |  |
| Sum Sq 0 | 0.0013 |  |  |
| Std Error 0 | 0.0178 |  |  |
| LHS Mean 0 | 0.1414 |  |  |
| R -Squared 0 | 0.0000 |  |  |


| R Bar Squared 0.0000 |  |  |  |
| :---: | :---: | :---: | :---: |
| F 0, 4 | NC |  |  |
| D.W. (1) | 1.6889 |  |  |
| D.W. (2) | 1.2345 |  |  |
| EM1617NAS $=(-0.23035 *$ RTP. $1+0.24985) *$ EM1617 |  |  |  |
| Ordinary Least Squares |  |  |  |
| ANNUAL data for 5 periods from 2000 to 2004 |  |  |  |
| Date: 9 NOV 2005 |  |  |  |
| em1617nas/em | 1617 = | $\begin{aligned} & -0.23035 * \text { rtp. } 1+ \\ & (5.08538) \end{aligned}$ | $\begin{aligned} & 0.24985 \\ & (5.53372) \end{aligned}$ |
| Sum Sq 0.0000 |  |  |  |
| Std Error | 0.0022 |  |  |
| LHS Mean | 0.0203 |  |  |
| R-Squared | 0.8961 |  |  |
| R Bar Squared | 0.8614 |  |  |
| F-STAT 1, 3 | 25.8611 |  |  |
| D.W. (1) | 2.4658 |  |  |
| D.W. (2) | 1.6839 |  |  |
| EM1819NAS $=(-0.05782 *$ RTP. $1+0.07265) *$ EM1819 |  |  |  |
| Ordinary Least Squares |  |  |  |
| ANNUAL data for 5 periods from 2000 to 2004 |  |  |  |
| Date: 9 NOV 2005 |  |  |  |
| em1819nas/em1819 = |  | $\begin{aligned} & -0.05782 \text { * rtp. } 1+ \\ & (3.43044) \end{aligned}$ | $\begin{aligned} & 0.07265 \\ & (4.32458) \end{aligned}$ |
| Sum Sq | 0.0000 |  |  |
| Std Error | 0.0008 |  |  |
| LHS Mean | 0.0150 |  |  |
| R-Squared | 0.7969 |  |  |
| R Bar Squared | 0.7291 |  |  |
| F-STAT 1, 3 | 11.7679 |  |  |
| D.W. (1) | 3.3262 |  |  |
| D.W. (2) | 1.0399 |  |  |
| EM2024NAS $=(-0.09206 *$ RTP. $1+0.11567) *$ EM2024 |  |  |  |
| Ordinary Least Squares |  |  |  |
| ANNUAL data for 5 periods from 2000 to 2004 |  |  |  |
| Date: 9 NOV 2005 |  |  |  |
| em2024nas/em | 2024 | $\begin{aligned} & -0.09206 \text { * rtp. } 1+ \\ & (2.44839) \end{aligned}$ | $\begin{aligned} & 0.11567 \\ & (3.08618) \end{aligned}$ |
| Sum Sq | 0.0000 |  |  |
| Std Error | 0.0018 |  |  |
| LHS Mean | 0.0239 |  |  |
| R-Squared | 0.6665 |  |  |
| R Bar Squared | 0.5553 |  |  |
| F-STAT 1, 3 | 5.9946 |  |  |
| D.W. (1) | 2.1493 |  |  |
| D.W. (2) | 1.7046 |  |  |
| EM2534NAS $=(-0.09661 *$ RTP. $1+0.14843) *$ EM2534 |  |  |  |
| Ordinary Least Squares |  |  |  |
| ANNUAL data for 5 periods from 2000 to 2004 |  |  |  |
| Date: 9 NOV 2005 |  |  |  |
| em2534nas/em | $2534=$ | $\begin{aligned} & -0.09661 \text { * rtp. } 1+ \\ & (2.81478) \end{aligned}$ | $\begin{aligned} & 0.14843 \\ & (4.33847) \end{aligned}$ |
| Sum Sq | 0.0000 |  |  |
| Std Error | 0.0017 |  |  |

```
LHS Mean 0.0522
R-Squared 0.7254
R Bar Squared 0.6338
F-STAT 1, 3 }7.923
D.W. (1) 1.8300
D.W. (2) }2.963
EM3544NAS = (0.02739 * RTP.1 + 0.05236) * EM3544
Ordinary Least Squares
ANNUAL data for 5 periods from 2000 to 2004
Date: 9 NOV 2005
em3544nas/em3544 \(=\underset{(0.61129)}{0.02739 * r t p . ~}+\underset{(1.17241)}{0.05236}\)
\begin{tabular}{ll}
Sum Sq & 0.0000 \\
Std Error & 0.0022 \\
LHS Mean & 0.0797 \\
R-Squared & 0.1108 \\
R Bar Squared & 0.1857 \\
F-STAT 1, 3 & 0.3737 \\
D.W. (1) & 2.5508 \\
D.W. (2) & 2.2676
\end{tabular}
EM4554NAS = (0.06217 * RTP.1 + 0.03411) * EM4554
Ordinary Least Squares
ANNUAL data for 5 periods from 2000 to 2004
Date: 9 NOV 2005
\(\mathrm{em} 4554 \mathrm{nas} / \mathrm{em} 4554=\underset{(1.91738)}{0.06217} *\) rtp. \(1+\underset{(1.05544)}{0.03411}\)
\begin{tabular}{ll}
Sum Sq & 0.0000 \\
Std Error & 0.0016 \\
LHS Mean & 0.0961 \\
R-Squared & 0.5507 \\
R Bar Squared & 0.4009 \\
F-STAT 1, 3 & 3.6764 \\
D.W. (1) & 2.5497 \\
D.W. (2) & 1.5554
\end{tabular}
EM5564NAS = (-0.04776 * RTP.1 + 0.16626) * EM5564
Ordinary Least Squares
ANNUAL data for 5 periods from 2000 to 2004
Date: 9 NOV 2005
\(\left.\begin{array}{l}\text { em5564nas/em5564 }=\begin{array}{l}-0.04776 \\ (0.60480)\end{array} \\ \\ \text { Sum Sq }\end{array} \quad \begin{array}{l}0.0000 \\ \text { (2.11226) }\end{array}\right)\)
```

| Std Error | 0.0069 |
| :--- | :--- |
| LHS Mean | 0.1653 |
| R-Squared | 0.0000 |
| R Bar Squared | 0.0000 |
| F-stat 0, 4 | NC |
| D.W. (1) | 1.7716 |
| D.W. (2) | 2.9645 |

Ordinary Least Squares
ANNUAL data for 5 periods from 2000 to 2004
Date: 9 NOV 2005

| em7074nas/em7074 |  |
| :--- | ---: |
|  |  |
|  |  |
| Sum Sq | 0.0012 |
| Std Error | 0.0174 |
| LHS Mean | 0.1780 |
| R-Squared | 0.0000 |
| R Bar Squared | 0.0000 |
| F-stat 0, 4 | NC |
| D.W. (1) | 1.7116 |
| D.W. (2) | 2.1991 |

Ordinary Least Squares
ANNUAL data for 5 periods from 2000 to 2004
Date: 9 NOV 2005

em75onas/em75o $=\quad$| 0.19058 |
| :--- |
| $(20.1892)$ |

| Sum Sq | 0.0018 |
| :--- | :--- |
| Std Error | 0.0211 |
| LHS Mean | 0.1906 |
| R-Squared | 0.0000 |
| R Bar Squared | 0.0000 |
| F-stat 0, 4 | NC |
| D.W. (1) | 2.7330 |
| D.W. (2) | 0.9992 |

Nonagricultural Unpaid Family Workers
EF1617NAU $=0.00012 *$ ENAS
EF1819NAU $=0.00025 *$ ENAS
EF2024NAU $=0.00024 *$ ENAS
EF2534NAU $=0.00117 *$ ENAS
EF3544NAU $=0.00218 *$ ENAS
EF4554NAU $=0.00226 *$ ENAS
EF5564NAU $=0.00083 *$ ENAS
EF65ONAU $=(0.00027+0.00021+0.00008) *$ ENAS

EM1617NAU $=0.00028 *$ ENAS
EM1819NAU $=0.00033 *$ ENAS
EM2024NAU $=0.00050 *$ ENAS
EM2534NAU $=0.00044 *$ ENAS
EM3544NAU $=0.00043 *$ ENAS
EM4554NAU $=0.00052 *$ ENAS
EM5564NAU $=0.00037 *$ ENAS
EM65ONAU $=(0.00023 * 0.00010 ~+~ 0.00011) ~$ ENAS

Agricultural Wage Workers
EM1617AW $=$ EAW $*(-0.00594-0.09353 * \mathrm{RTP}+5.28754 * \mathrm{EM} 1617 / \mathrm{E}+0.08116)$
$\mathrm{EM} 1819 \mathrm{AW}=\mathrm{EAW} *(-0.00131-0.18120 * \mathrm{RTP}+3.87151 * \mathrm{EM} 1819 / \mathrm{E}+0.16636)$

|  |  |
| :---: | :---: |
| EM2534AW | EAW * (-0.02065 + 0.38358* RTP - 0.98380 * EM2534/E + 0.00751) |
| M354 | EAW * (0.00402-0.15663 * RTP + 1.72119 * EM3544/E + 0.05679) |
| EM4 | EAW * (0.00834 + 0.03746 * RTP + 0.46522 * EM4554/E + 0.00144) |
| EM | EAW * (-0.00655 + 0.03521 * RTP + 0.46852 * EM5564/E - 0.00037) |
| EM6 | EAW * (-0.00114 + 0.07640 * RTP + 3.25911 * EM65O/E - 0.10058) |
| EF1617A | EAW * (-0.00055-0.05470 * RTP + 1.41760 * EF1617/E + 0.04979) |
| 19A | EAW * (0.00102-0.07375 * RTP + 0.78394 * EF1819/E + 0.07226) |
| 024AW | EAW * (0.00112-0.05971 * RTP + 0.57256 * EF2024/E + 0.05907) |
| 2534AW | EAW * $(0.00623+0.08868 *$ RTP +1.00897 * EF2534/E - 0.15142) |
| EF3544AW | EAW * (0.00687-0.00259 * RTP + 0.51319 * EF3544/E - 0.00937) |
| EF4554AW | EAW * (0.00185 + 0.08747 * RTP + 0.28022 * EF4554/E - 0.08053) |
| EF5564AW = | EAW * (-0.00140-0.03001 * RTP - 0.59383 * EF5564/E + 0.07088) |
| EF65OAW = | EAW * (0.00096 + 0.06768*RTP + 1.04213*EF65O/E - 0.07359) |

Agricultural Self-employed Workers

| EM1617AS = | NM1617 * (0.00528 + 0.00404) |
| :---: | :---: |
| EM1819AS = | NM1819 * (0.00309 + 0.28448 * EA / (NM16O+ NF16O) - 0.00165) |
| EM2024AS = | NM2024 * (-0.00181 + 0.97958 * EA / (NM16O+ NF16O) - 0.01093) |
| EM2534AS = | NM2534 * (-0.00263 + 1.23186 * EA / (NM16O+ NF16O) - 0.01021) |
| EM3544AS = | NM3544 * (-0.00151 + 1.66765 * EA / (NM16O+ NF16O) - 0.01450) |
| EM4554AS = | NM4554 * (-0.00381 + 2.86654 * EA / (NM16O+ NF16O) - 0.03175) |
| EM5564AS = | NM5564 * (-0.00460 + 2.78817 * EA / (NM16O+ NF16O) - 0.02398) |
| EM650AS = | NM65O * (0.00079 + 1.76904 * EA / (NM16O+ NF16O) - 0.01437) |
| EF1617AS = | NF1617 * (0.00181 + 0.00030) |
| EF1819AS = | EM1819AS * (-0.02393 + 0.63672 * RTP + 0.98791 * EF1819/EM1819-1.43926) |
| EF2024AS = | EM2024AS * (0.07353-0.40207 * RTP + 0.57572 * EF2024/EM2024-0.01117) |
| EF2534AS = | EM2534AS * (0.16575 + 0.16967 * RTP + 0.55503 * EF2534/EM2534-0.43412) |
| EF3544AS = | EM3544AS * (0.15848 + 0.37839 * RTP + 0.37764 * EF3544/EM3544-0.45362) |
| EF4554AS = | EM4554AS * (0.21947 + 0.29497 * RTP + 0.58974 * EF4554/EM4554-0.51966) |
| EF5564AS = | EM5564AS * (0.20892 + 0.36294 * RTP + 0.65320 * EF5564/EM5564-0.66626) |
| EF650AS = | EM65OAS * (0.16242 + 0.54916 * RTP + 0.06199 * EF65O/EM65O-0.47556) |

Agricultural Unpaid Family Workers
EF1617AU $=0.002$
EF1819AU $=0.001$
EF2024AU $=0.001$
EF2534AU $=0.003$
EF3544AU $=0.004$
EF4554AU $=0.005$
EF5564AU $=0.003$
EF65OAU $=0.001$
EM1617AU $=0.006$
EM1819AU $=0.005$
EM2024AU $=0.005$
EM2534AU $=0.002$
EM3544AU $=0.002$
EM4554AU = 0.001
EM5564AU $=0.001$
EM65OAU $=0.002$

## Quarterly Employment Equations

$E N A=E-E A$

| Nonagricultural Wage Workers, Private Household Workers: |  |
| :--- | :--- |
| EF1617NAWPH_R $=$ | MAX (0.001, -0.20802 * MOVAVG (4, RTP.1) $-0.40988 *$ MOVAVG (4, RTP.5) + 0.01015 + 61.2465 * 1/YEAR - |
|  | $0.00965 *$ MINW/CPIW_U + 0.01561 * NU10/NF1617 - 0.13398) * EF1617 + EF1617NAWPH.ADJ |
| EF1819NAWPH_R $=$ | MAX (0.001, -0.03363 * MOVAVG (4, RTP.1) $-0.12989 *$ MOVAVG (4, RTP.5) -0.00661 + 8.44701 * 1/YEAR - |
|  | $0.00539 *$ MINW/CPIW_U + 0.00345 * NU10/NF1819 + 0.07597) * EF1819 + EF1819NAWPH.ADJ |


| EF2024NAWPH_R = | MAX (0.001, -0.18707 * MOVAVG (20, RTP.1) - $0.00223+2.12060$ * 1/YEAR + 0.00820 * NU10/NF2024 + 0.14537 ) * EF2024 + EF2024NAWPH.ADJ |
| :---: | :---: |
| EF2534NAWPH_R = | MAX ( $0.001,0.01874$ * MOVAVG (4, RTP.1) - 0.04167 * MOVAVG (20, RTP.5) $-0.00090+1.55167 * 1 / Y E A R+$ 0.01021 * NU10/NF2534-0.00170) * EF2534 + EF2534NAWPH.ADJ |
| EF3544NAWPH_R = | (0.00622 * MOVAVG (4, RTP.1) - 0.06062 * MOVAVG (20, RTP.5) $+0.00008+0.29372 * \operatorname{MOVAVG}(12$, EF2534NAWPH.36/EF2534.36) + 0.06187) * EF3544 + EF3544NAWPH.ADJ |
| EF4554NAWPH_R = | $\begin{aligned} & (0.02788 * \text { MOVAVG (4, RTP.1) }-0.10996 * \text { MOVAVG (20, RTP.5) }-0.00349+0.53068 * \text { MOVAVG }(12, \\ & \text { EF3544NAWPH.36/EF3544.36) }+0.08883) * \text { EF4554 + EF4554NAWPH.ADJ } \end{aligned}$ |
| EF5564NAWPH_R = | $\begin{aligned} & (0.05939 * \text { MOVAVG (4, RTP.1) - 0.10618 * MOVAVG (8, RTP.5) }-0.00579+0.66195 * \text { MOVAVG }(12, \\ & \text { EF4554NAWPH.36/EF4554.36) }+0.05966) * \text { EF5564 + EF5564NAWPH.ADJ } \end{aligned}$ |
| EF65ONAWPH_R = | ( 0.22642 * MOVAVG (4, RTP.1) - $0.02069+0.33505$ * MOVAVG (12, EF5564NAWPH.36) -0.19707 ) + EF65ONAWPH.ADJ |
| EM1617NAWPH_R = | MAX (0.001, -0.05284 * MOVAVG (4, RTP.1) - 0.17833 * MOVAVG (4, RTP.5) -0.00768 + 9.19738 * 1/YEAR 0.00588 * MINW/CPIW_U + 0.16862) * EM1617+ EM1617NAWPH.ADJ |
| EM1819NAWPH_R = | MAX ( $0.001,-0.07122$ * MOVAVG (4, RTP.1) -0.03737 * MOVAVG (4, RTP.5) -0.00282 + 3.76796 * 1/YEAR 0.00499 * MINW/CPIW_U + 0.08727) * EM1819+ EM1819NAWPH.ADJ |
| EM2024NAWPH_R = | MAX (0.001, -0.00450 * MOVAVG (4, RTP.1) - 0.02345 * MOVAVG (4, RTP.5) - 0.00113-0.00057 * MINW/CPIW_U + 0.03265) * EM2024 + EM2024NAWPH.ADJ |
| EM2534NAWPH_R = | MAX (0.001, - 0.00490 * MOVAVG (4, RTP.5) - 0.00054-0.00051 * MINW/CPIW_U + 0.00789) * EM2534 + EM2534NAWPH.ADJ |
| EM3544NAWPH_R = | (-0.00446 * MOVAVG (4, RTP.5) - 0.00041-0.00053 * MINW/CPIW_U + 0.00726) * EM3544 + EM3544NAWPH.ADJ |
| EM4554NAWPH_R = | $(-0.00039+0.00129) *$ EM4554 + EM4554NAWPH.ADJ |
| EM5564NAWPH_R = | $(-0.00015+0.00200) *$ EM5564 + EM5564NAWPH.ADJ |
| EM65ONAWPH_R = | $(-0.00679+0.64405$ * MOVAVG (12, EM5564NAWPH.36) + 0.00231) + EM65ONAWPH.ADJ |
| ENAWPH_R = | ```EF1617NAWPH_R + EF1819NAWPH_R + EF2024NAWPH_R + EF2534NAWPH_R + EF3544NAWPH_R + EF4554NAWPH_R + EF5564NAWPH_R + EF65ONAWPH_R + EM1617NAWPH_R + EM1819NAWPH_R + EM2024NAWPH_R + EM2534NAWPH_R + EM3544NAWPH_R + EM4554NAWPH_R + EM5564NAWPH_R + EM65ONAWPH_R``` |
| ENAWPH = | IF LONGRANGE $=0$ |
|  | THEN ENAWPH_R |
|  | ELSE ENAWPH. 1 * (E_FE/E_FE.1) |
| EM1617NAWPH = | 617NAWPH_R * (ENAWPH/ENAWPH_R) |
| EM1819NAWPH = | 819NAWPH_R * (ENAWPH/ENAWPH_R) |
| EM2024NAWPH = E | 024NAWPH_R * (ENAWPH/ENAWPH_R) |
| EM2534NAWPH = E | 534NAWPH_R * (ENAWPH/ENAWPH_R) |
| EM3544NAWPH = | 544NAWPH_R * (ENAWPH/ENAWPH_R) |
| EM4554NAWPH = E | 554NAWPH_R * (ENAWPH/ENAWPH_R) |
| EM5564NAWPH = | 564NAWPH_R * (ENAWPH/ENAWPH_R) |
| EM65ONAWPH = | 50NAWPH_R * (ENAWPH/ENAWPH_R) |
| EF1617NAWPH = | 617NAWPH_R * (ENAWPH/ENAWPH_R) |
| EF1819NAWPH = | 819NAWPH_R * (ENAWPH/ENAWPH_R) |
| EF2024NAWPH = | 024NAWPH_R * (ENAWPH/ENAWPH_R) |
| EF2534NAWPH $=$ | 534NAWPH_R * (ENAWPH/ENAWPH_R) |
| EF3544NAWPH = | 544NAWPH_R * (ENAWPH/ENAWPH_R) |
| EF4554NAWPH = | 54NAWPH_R * (ENAWPH/ENAWPH_R) |
| EF5564NAWPH = | 564NAWPH_R * (ENAWPH/ENAWPH_R) |
| EF65ONAWPH = | ONAWPH_R * (ENAWPH/ENAWPH_R) |
| $\begin{aligned} \text { EFNAWPH }= & \text { EF161 } \\ & \text { EF556 } \end{aligned}$ | AWPH + EF1819NAWPH + EF2024NAWPH + EF2534NAWPH + EF3544NAWPH + EF4554NAWPH + AWPH + EF65ONAWPH |
| $\begin{aligned} & \text { EMNAWPH }= \text { EM161 } \\ & \text { EM55 } \end{aligned}$ | AWPH + EM1819NAWPH + EM2024NAWPH + EM2534NAWPH + EM3544NAWPH + EM4554NAWPH + AWPH + EM65ONAWPH |
| Nonagricultural Self-employed Workers: |  |
| EF1617NAS_R = (0) | 2015 * RTP. $1-0.10551$ ) * EF1617 + EF1617NAS.ADJ |
| EF1819NAS_R = | 184 * RTP. $1-0.10241$ ) * EF1819 + EF1819NAS.ADJ |
| EF2024NAS_R = (0.0 | 9908 * RTP. $1-0.07176$ ) * EF2024 + EF2024NAS.ADJ |
| EF2534NAS_R = (0.0 | 906 * RTP. $1+0.03539$ ) EF2534 + EF2534NAS.ADJ |
| EF3544NAS_R = | 1869 * RTP. $1+0.08087$ ) EF3544 + EF3544NAS.ADJ |
| EF4554NAS_R = (0.0 | 232 * RTP. $1-0.00701)$ * EF4554 + EF4554NAS.ADJ |


| EF5564NAS_R = | $(0.07872$ * RTP. $1+0.00466$ ) * EF5564 + EF5564NAS.ADJ |
| :---: | :---: |
| EF65ONAS_R = | $(0.10940$ * EF6569 + 0.12265 * EF7074 + 0.14137 * EF75O) + EF65ONAS.ADJ |
| EM1617NAS_R = | $(-0.23035 *$ RTP. $1+0.24985) *$ EM1617 + EM1617NAS.ADJ |
| EM1819NAS_R = | $(-0.05782$ * RTP. $1+0.07265)$ * EM1819 + EM1819NAS.ADJ |
| EM2024NAS_R = | $(-0.09206$ * RTP. $1+0.11567) *$ EM2024 + EM2024NAS.ADJ |
| EM2534NAS_R = | $(-0.09661$ * RTP. $1+0.14843) *$ EM2534 + EM2534NAS.ADJ |
| EM3544NAS_R = | $(0.02739$ * RTP. $1+0.05236)$ * EM3544 + EM3544NAS.ADJ |
| EM4554NAS_R = | $(0.06217$ * RTP. $1+0.03411$ ) * EM4554 + EM4554NAS.ADJ |
| EM5564NAS_R = | $(-0.04776$ * RTP. $1+0.16626) *$ EM5564 + EM5564NAS.ADJ |
| EM650NAS_R = | $(0.16527$ * EM6569 + 0.17798 * EM7074 + 0.19058 * EM75O) + EM65ONAS.ADJ |


| ENAS_R $=$ | EF1617NAS_R + EF1819NAS_R + EF2024NAS_R + EF2534NAS_R + EF3544NAS_R + EF4554NAS_R + EF5564NAS_R + |
| ---: | :--- |
|  | EF65ONAS_R + EM1617NAS_R + EM1819NAS_R + EM2024NAS_R + EM2534NAS_R + EM3544NAS_R + |
|  | EM4554NAS_R + EM5564NAS_R + EM65ONAS_R |

ENAS $=$ IF LONGRANGE $=0$
THEN ENAS_R
ELSE ENA * (ENAS.1/ENA.1)

| EM1617NAS = | EM1617NAS_R * (ENAS/ENAS_R) |
| :---: | :---: |
| EM1819NAS = | EM1819NAS_R * (ENAS/ENAS_R) |
| EM2024NAS = | EM2024NAS_R * (ENAS/ENAS_R) |
| EM2534NAS = | EM2534NAS_R * (ENAS/ENAS_R) |
| EM3544NAS = | EM3544NAS_R * (ENAS/ENAS_R) |
| EM4554NAS = | EM4554NAS_R * (ENAS/ENAS_R) |
| EM5564NAS = | EM5564NAS_R * (ENAS/ENAS_R) |
| EM65ONAS = | EM65ONAS_R * (ENAS/ENAS_R) |
| EF1617NAS = | EF1617NAS_R * (ENAS/ENAS_R) |
| EF1819NAS = | EF1819NAS_R * (ENAS/ENAS_R) |
| EF2024NAS = | EF2024NAS_R * (ENAS/ENAS_R) |
| EF2534NAS = | EF2534NAS_R * (ENAS/ENAS_R) |
| EF3544NAS = | EF3544NAS_R * (ENAS/ENAS_R) |
| EF4554NAS = | EF4554NAS_R * (ENAS/ENAS_R) |
| EF5564NAS = | EF5564NAS_R * (ENAS/ENAS_R) |
| EF65ONAS = | EF65ONAS_R * (ENAS/ENAS_R) |
| EFNAS = | EF1617NAS + EF1819NAS + EF2024NAS + EF2534NAS + EF3544NAS + EF4554NAS + EF5564NAS + EF65ONAS |
| EMNAS = | $\qquad$ |


| Nonagricultural Unpaid Family Workers |  |
| :---: | :---: |
| EF1617NAU_R = | 0.00012 * ENAS + EF1617NAU.ADJ |
| EF1819NAU_R = | 0.00025 * ENAS + EF1819NAU.ADJ |
| EF2024NAU_R = | 0.00024 * ENAS + EF2024NAU.ADJ |
| EF2534NAU_R = | 0.00117 * ENAS + EF2534NAU.ADJ |
| EF3544NAU_R = | 0.00218 * ENAS + EF3544NAU.ADJ |
| EF4554NAU_R = | 0.00226 * ENAS + EF4554NAU.ADJ |
| EF5564NAU_R = | 0.00083 * ENAS + EF5564NAU.ADJ |
| EF65ONAU_R = | $(0.00027+0.00021+0.00008) *$ ENAS + EF65ONAU.ADJ |
| EM1617NAU_R = | 0.00028 * ENAS + EM1617NAU.ADJ |
| EM1819NAU_R = | 0.00033 * ENAS + EM1819NAU.ADJ |
| EM2024NAU_R = | 0.00050 * ENAS + EM2024NAU.ADJ |
| EM2534NAU_R = | 0.00044 * ENAS + EM2534NAU.ADJ |
| EM3544NAU_R = | 0.00043 * ENAS + EM3544NAU.ADJ |
| EM4554NAU_R = | 0.00052 * ENAS + EM4554NAU.ADJ |
| EM5564NAU_R = | 0.00037 * ENAS + EM5564NAU.ADJ |
| EM650NAU_R = | $(0.00023+0.00010+0.00011) *$ ENAS + EM65ONAU.ADJ |
| ENAU_R = | EF1617NAU_R + EF1819NAU_R + EF2024NAU_R + EF2534NAU_R + EF3544NAU_R + EF4554NAU_R + EF5564NAU_R + EF65ONAU_R + EM1617NAU_R + EM1819NAU_R + EM2024NAU_R + EM2534NAU_R + EM3544NAU_R + EM4554NAU_R + EM5564NAU_R + EM65ONAU_R |

ENAU $=\quad$ ENAU_R

```
EM1617NAU = EM1617NAU_R * (ENAU/ENAU_R)
EM1819NAU = EM1819NAU_R * (ENAU/ENAU_R)
EM2024NAU = EM2024NAU_R * (ENAU/ENAU_R)
EM2534NAU = EM2534NAU_R * (ENAU/ENAU_R)
EM3544NAU = EM3544NAU_R * (ENAU/ENAU_R)
EM4554NAU = EM4554NAU_R * (ENAU/ENAU_R)
EM5564NAU = EM5564NAU_R * (ENAU/ENAU_R)
EM65ONAU = EM65ONAU_R * (ENAU/ENAU_R)
EF1617NAU = EF1617NAU_R * (ENAU/ENAU_R)
EF1819NAU = EF1819NAU_R * (ENAU/ENAU_R)
EF2024NAU = EF2024NAU_R *(ENAU/ENAU_R)
EF2534NAU = EF2534NAU_R * (ENAU/ENAU_R)
EF3544NAU = EF3544NAU_R * (ENAU/ENAU_R)
EF4554NAU = EF4554NAU_R * (ENAU/ENAU_R)
EF5564NAU = EF5564NAU_R * (ENAU/ENAU_R)
EF65ONAU = EF65ONAU_R * (ENAU/ENAU_R)
EFNAU = EF1617NAU + EF1819NAU + EF2024NAU + EF2534NAU + EF3544NAU + EF4554NAU + EF5564NAU + EF65ONAU
EMNAU = EM1617NAU + EM1819NAU + EM2024NAU + EM2534NAU + EM3544NAU + EM4554NAU + EM5564NAU +
 EM65ONAU
```

Agricultural Workers
EA $=I F$ LONGRANGE $=0$
THEN GDPPF00 / (EXP ( $-0.20541+0.03254$ * YEAR - $0.07829+0.37854$ )
ELSE E * EA.1/E. 1

Agricultural Wage Workers

| EAW $=$ | IF LONGRANGE $=0$ |
| ---: | :--- |
|  | THEN EA * $(0.00893 *$ YEAR $+0.33159 *$ RTP -0.67943$)$ |
|  | ELSE EA $*($ EAW.1/EA. 1$)$ |

EM1617AW_R $=\quad$ MAX ( 0, EAW * ( $-0.00594-0.09353 *$ MOVAVG (2, RTP.1) $+5.28754 *$ EM1617/E + 0.08116 $)+$ EM1617AW.ADJ $)$
EM1819AW_R $=\quad$ MAX ( 0, EAW $*(-0.00131-0.18120 *$ MOVAVG (2, RTP.1) $+3.87151 *$ EM1819/E + 0.16636) + EM1819AW.ADJ $)$
EM2024AW_R $=\quad$ MAX ( 0, EAW $^{*}(-0.00664+0.10493 *$ MOVAVG (2, RTP.1) $+2.00153 *$ EM2024/E - 0.08191) + EM2024AW.ADJ $)$
EM2534AW_R $=\quad$ MAX $(0, E A W *(-0.02065+0.38358 * \operatorname{MOVAVG}(2$, RTP.1 $)-0.98380 *$ EM2534/E +0.00751$)+$ EM2534AW.ADJ $)$
EM3544AW_R $=\quad$ MAX (0, EAW * (0.00402-0.15663 * MOVAVG (2, RTP.1) $+1.72119 *$ EM3544/E + 0.05679) + EM3544AW.ADJ $)$
EM4554AW_R $=$ MAX ( $0, \mathrm{EAW}^{*}(0.00834+0.03746 *$ MOVAVG (2, RTP.1) $+0.46522 *$ EM4554/E + 0.00144) + EM4554AW.ADJ $)$
EM5564AW_R $=\quad$ MAX ( 0, EAW * $(-0.00655+0.03521 *$ MOVAVG (2, RTP.1) $+0.46852 *$ EM5564/E - 0.00037) + EM5564AW.ADJ $)$
EM65OAW_R $=\quad$ MAX $(0, E A W *(-0.00114+0.07640 *$ MOVAVG $(2$, RTP.1 $)+3.25911 *$ EM65O/E - 0.10058) + EM65OAW.ADJ $)$
EF1617AW_R $=\quad$ MAX (0, EAW * ( $-0.00055-0.05470 *$ MOVAVG (2, RTP.1) $+1.41760 *$ EF1617/E + 0.04979) + EF1617AW.ADJ $)$
EF1819AW_R $=\quad$ MAX (0, EAW * (0.00102-0.07375 * MOVAVG (2, RTP.1) + 0.78394 * EF1819/E + 0.07226) + EF1819AW.ADJ $)$
EF2024AW_R $=$ MAX (0, EAW * (0.00112-0.05971 * MOVAVG (2, RTP.1) + 0.57256 * EF2024/E + 0.05907) + EF2024AW.ADJ $)$
EF2534AW_R $=\quad$ MAX ( 0, EAW * $(0.00623+0.08868 *$ MOVAVG (2, RTP.1) + 1.00897 * EF2534/E - 0.15142) + EF2534AW.ADJ)
EF3544AW_R $=\quad$ MAX (0, EAW * (0.00687-0.00259 * MOVAVG (2, RTP.1) $+0.51319 *$ EF3544/E - 0.00937) + EF3544AW.ADJ $)$
EF4554AW_R $=\quad$ MAX (0, EAW * $(0.00185+0.08747$ * MOVAVG (2, RTP.1) +0.28022 * EF4554/E - 0.08053) + EF4554AW.ADJ)
EF5564AW_R $=\quad$ MAX (0, EAW * ( $-0.00140-0.03001 *$ MOVAVG (2, RTP.1) -0.59383 * EF5564/E + 0.07088) + EF5564AW.ADJ $)$
EF65OAW_R $=\quad$ MAX $(0, E A W *(0.00096+0.06768 * \operatorname{MOVAVG}(2$, RTP.1 $)+1.04213$ * EF65O/E - 0.07359) + EF65OAW.ADJ $)$
EAW_R = EF1617AW_R + EF1819AW_R + EF2024AW_R + EF2534AW_R + EF3544AW_R + EF4554AW_R + EF5564AW_R +
EF65OAW_R + EM1617AW_R + EM1819AW_R + EM2024AW_R + EM2534AW_R + EM3544AW_R +
EM4554AW_R + EM5564AW_R + EM65OAW_R
EM1617AW $=$ EM1617AW_R * $\left(E A W / E A W \_R\right)$
EM1819AW $=$ EM1819AW_R * $\left(E A W / E A W \_R\right)$
EM2024AW $=$ EM2024AW_R $*\left(E A W / E A W \_R\right)$
EM2534AW $=$ EM2534AW_R * (EAW/EAW_R)
EM3544AW $=$ EM3544AW_R $*\left(E A W / E A W \_R\right)$


```
EFAS = EF1617AS + EF1819AS + EF2024AS + EF2534AS + EF3544AS + EF4554AS + EF5564AS + EF65OAS
EMAS = EM1617AS + EM1819AS + EM2024AS + EM2534AS + EM3544AS + EM4554AS + EM5564AS + EM65OAS
```

| Unpaid Agricultural Family Workers |  |
| :---: | :---: |
| EM1617AU_R = | MAX (0, 0.002 + EM1617AU.ADJ) |
| EM1819AU_R = | MAX (0, $0.001+$ EM1819AU.ADJ) |
| EM2024AU_R = | MAX (0, $0.001+$ EM2024AU.ADJ) |
| EM2534AU_R | MAX (0, 0.003 + EM2534AU.ADJ) |
| EM3544AU_R = | MAX (0, $0.004+$ EM3544AU.ADJ) |
| EM4554AU_R = | MAX (0, $0.005+$ EM4554AU.ADJ) |
| EM5564AU_R = | MAX (0, 0.003 + EM5564AU.ADJ) |
| EM650AU_R = | MAX (0, 0.001 + EM65OAU.ADJ) |
| EF1617AU_R = | MAX (0, $0.006+$ EM1617AU.ADJ) |
| EF1819AU_R = | MAX (0, $0.005+$ EF1819AU.ADJ) |
| EF2024AU_R = | MAX (0, $0.005+$ EF2024AU.ADJ) |
| EF2534AU_R = | MAX (0, $0.002+$ EF2534AU.ADJ) |
| EF3544AU_R = | MAX (0, $0.002+$ EF3544AU.ADJ) |
| EF4554AU_R = | MAX (0, $0.001+$ EF4554AU.ADJ) |
| EF5564AU_R = | MAX (0, $0.001+$ EF5564AU.ADJ) |
| EF65OAU_R = | MAX (0, 0.002 + EF65OAU.ADJ) |


| EAU_R = | EF1617AU_R + EF1819AU_R + EF2024AU_R + EF2534AU_R + EF3544AU_R + EF4554AU_R + EF5564AU_R + EF65OAU_R + EM1617AU_R + EM1819AU_R + EM2024AU_R + EM2534AU_R + EM3544AU_R + EM4554AU_R + EM5564AU_R + EM65OAU_R |
| :---: | :---: |

$\mathrm{EAU}=\quad$ IF LONGRANGE $=0$
THEN EAU_R
ELSE EAU.1/EA. 1 * EA
EM1617AU = EM1617AU_R * (EAU/EAU_R)
EM1819AU $=$ EM1819AU_R * (EAU/EAU_R)
EM2024AU $=$ EM2024AU_R * (EAU/EAU_R)
EM2534AU $=$ EM2534AU_R * (EAU/EAU_R)
EM3544AU $=$ EM3544AU_R * (EAU/EAU_R)
EM4554AU $=$ EM4554AU_R * (EAU/EAU_R)
EM5564AU $=$ EM5564AU_R * $\left(E A U / E A U \_R\right)$
EM65OAU $=$ EM65OAU_R * (EAU/EAU_R)
EF1617AU $=$ EF1617AU_R * (EAU/EAU_R)
EF1819AU $=$ EF1819AU_R $*\left(E A U / E A U \_R\right)$
EF2024AU $=$ EF2024AU_R * (EAU/EAU_R)
EF2534AU $=$ EF2534AU_R $*($ EAU/EAU_R $)$
EF3544AU $=$ EF3544AU_R * (EAU/EAU_R)
EF4554AU $=$ EF4554AU_R $*\left(E A U / E A U \_R\right)$
EF5564AU $=$ EF5564AU_R * (EAU/EAU_R)
EF65OAU $=$ EF65OAU_R $*\left(E A U / E A U \_R\right)$
$\mathrm{EFAU}=\quad \mathrm{EF} 1617 \mathrm{AU}+\mathrm{EF} 1819 \mathrm{AU}+\mathrm{EF} 2024 \mathrm{AU}+\mathrm{EF} 2534 \mathrm{AU}+\mathrm{EF} 3544 \mathrm{AU}+\mathrm{EF} 4554 \mathrm{AU}+\mathrm{EF} 5564 \mathrm{AU}+\mathrm{EF} 65 \mathrm{OAU}$
EMAU $=\quad$ EM1617AU + EM1819AU + EM2024AU + EM2534AU + EM3544AU + EM4554AU + EM5564AU + EM65OAU

## ANNUAL "AVERAGE HOURS WORKED" EQUATIONS

Total Nonagricultural Wage Workers
Males

| AHWM1617NAW $=$ | $34.4953 *$ RTP $+1.03247 *$ MINW/CPIW_U $-31.4229 *$ RNM1617S- $0.12369 * 1+12.1981$ |
| :--- | :--- |
| AHWM1819NAW $=$ | $32.4361 *$ RTP $+12.8742 *$ RTP.1 $+1.28624 *$ MINW/CPIW_U-16.0989 * RNM1819S $-0.27834 * 1-8.58664$ |
| AHWM2024NAW $=$ | $20.1161 *$ RTP $-10.2292 *$ RNM2024S $-2.28628 *($ PM2024NM $*$ NM2024NM $/($ PM2024NM $*$ NM2024NM + |
|  | PM2024MS $*$ NM2024MS + PM2024MA $*$ NM2024MA $)+23.2252$ |


| AHWM2534NAW = | 17.0559 * RTP - 0.29076 * $1+0.04542$ *YEAR + 22.5121 |
| :---: | :---: |
| AHWM3544NAW = | 18.3314 * RTP - 0.30475 * $1+0.04409$ *YEAR +22.3275 |
| AHWM4554NAW = | 16.0678 * RTP - 0.12289 * $1+0.07446$ *YEAR + 21.4366 |
| AHWM5564NAW = | 10.8277 * RTP + $0.23715 * 1+30.8975$ |
| AHWM650NAW = | $-0.28038 * 1+5.40682$ * RTP + 25.4797 |
| Females |  |
| AHWF1617NAW = | $17.2598 *$ RTP + 7.31262 * RTP. $1-24.9241$ * RNF1617S + 16.9218 |
| AHWF1819NAW = | 18.7922 * RTP + 13.1066 * RTP. -18.9417 * RNF1819S-16.2182 * PF1819 + 0.81920 * $1+16.7826$ |
| AHWF2024NAW = | -219.154 * PF2024 + 12.4226 * RTP - 0.98470 * $1+158.354$ * (PF2024) ${ }^{2}+98.6034$ |
| AHWF2534NAW = | -39.2904 * PF2534 + 39.6515 * (PF2534) ${ }^{2}+9.10839$ * RTP- 0.33503 * $1+35.8525$ |
| AHWF3544NAW = | -39.2904 * PF3544 + 39.6515 * (PF3544) ${ }^{2}+7.40115$ * RTP- $0.38214 * 1+36.9133$ |
| AHWF4554NAW = | 8.64511 * RTP - 63.8042 * PF4554 + 59.9107 * (PF4554) ${ }^{2}-0.58355 * 1+44.0723$ |
| AHWF5564NAW = | 6.61506 * RTP - 0.28969 * $1+8.36882$ * PF5564 + 24.8288 |
| AHWF65ONAW = | $-0.43916 * 1+26.5228+(8.36882 / 2) *($ PF65O-0.086 $)$ |
| Nonagricultural Self-employed Workers |  |
| AHWNAS = | 24.9592 * RTP - 17.2194 * EFNAS/ENAS + 22.0120 |
| Nonagricultural Unpaid Family Workers |  |
| AHWNAU = | 25.5124 * EF2534NAU + EF3544NAU + EF4554NAU)/ENAU + 19.2730 |
| Agricultural Wage Workers |  |
| AHWAW = | 6.58073 * RTP + 14.9130 * RTP. $1+19.7800$ |
| Agricultural Self-employed Workers |  |
| AHWAS = | 2.45830 * PGDPAF/PGDP - 3.61107 * $1+44.5318$ |
| Agricultural Unpaid F | Workers |
| AHWAU = | 39.3563 |

## QUARTERLY "AVERAGE HOURS WORKED" EQUATIONS

## Total

AHW $=\quad($ AHWNA $*$ ENA + AHWA $* E A) / \mathrm{E}$

Nonagricultural sector

Nonagricultural Wage Workers
AHWNAW $=$ (AHWMNAW * $(E M-$ EMNAS - EMNAU - EMAW - EMAS - EMAU) + AHWFNAW * (EF - EFNAS - EFNAU -
EFAW - EFAS - EFAU))/ (E - ENAS - ENAU - EA)
Males

| AHWMNAW1 = | AHWM1617NAW * (EM1617-EM1617NAS - EM1617NAU - EM1617AW - EM1617AS - EM1617AU) |
| :---: | :---: |
| AHWMNAW2 = | AHWM1819NAW * (EM1819-EM1819NAS - EM1819NAU - EM1819AW - EM1819AS - EM1819AU) |
| AHWMNAW3 = | AHWM2024NAW * (EM2024-EM2024NAS - EM2024NAU - EM2024AW - EM2024AS - EM2024AU) |
| AHWMNAW4 = | AHWM2534NAW * (EM2534-EM2534NAS - EM2534NAU - EM2534AW - EM2534AS - EM2534AU) |
| AHWMNAW5 | AHWM3544NAW * (EM3544-EM3544NAS - EM3544NAU - EM3544AW - EM3544AS - EM3544AU) |
| AHWMNAW6 | AHWM4554NAW * (EM4554-EM4554NAS - EM4554NAU - EM4554AW - EM4554AS - EM4554AU) |
| AHWMNAW7 = | AHWM5564NAW * (EM5564-EM5564NAS - EM5564NAU - EM5564AW - EM5564AS - EM5564AU) |
| AHWMNAW8 = | AHWM65ONAW * (EM65O - EM65ONAS - EM65ONAU - EM65OAW - EM65OAS - EM65OAU) |
| AHWMNAW = | (AHWMNAW1 + AHWMNAW2 + AHWMNAW3 + AHWMNAW4 + AHWMNAW5 + AHWMNAW6 + <br> AHWMNAW7 + AHWMNAW8) / (EM - EMNAS - EMNAU- EMAW - EMAS - EMAU) |
| AHWM1617NAW = | 34.4953 * MOVAVG (2, RTP.1) + 1.03247 * MINW/CPIW_U - 31.4229 * RNM1617S - $0.12369 * 1+12.1981+$ AHWM1617NAW.ADJ |
| AHWM1819NAW = | 32.4361 * MOVAVG (2, RTP.1) + 12.8742 * MOVAVG (2, RTP.5) + 1.28624 * MINW/CPIW_U - 16.0989 * RNM1819S - 0.27834 * 1-8.58664 + AHWM1819NAW.ADJ |

```
AHWM2024NAW = 20.1161 * MOVAVG (2, RTP.1) - 10.2292 * RNM2024S - 2.28628 * (PM2024NM * NM2024NM/ (PM2024NM *
 NM2024NM + PM2024MS * NM2024MS + PM2024MA * NM2024MA)) + 23.2252 + AHWM2024NAW.ADJ
AHWM2534NAW = MIN (45, 17.0559 * MOVAVG (2, RTP.1) - 0.29076 * 1 + 0.04542 *YEAR + 22.5121) + AHWM2534NAW.ADJ
AHWM3544NAW = MIN (45, 18.3314 * MOVAVG (2, RTP.1) - 0.30475 * 1 + 0.04409 *YEAR + 22.3275) + AHWM3544NAW.ADJ
AHWM4554NAW = MIN (45, 16.0678 * MOVAVG (2, RTP.1) - 0.12289 * 1 + 0.07446 *YEAR + 21.4366) + AHWM4554NAW.ADJ
AHWM5564NAW = 10.8277 * MOVAVG (2, RTP.1) + 0.23715*1 + 30.8975 + AHWM5564NAW.ADJ
AHWM65ONAW = -0.28038*1+5.40682* MOVAVG (2,RTP.1) + 25.4797 + AHWM65ONAW.ADJ
```

Females

| AHWFNAW1 = | AHWF1617NAW* (EF1617 -EF1617NAS-EF1617NAU-EF1617AW-EF1617AS-EF1617AU) |
| :---: | :---: |
| AHWFNAW2 = | AHWF1819NAW* (EF1819-EF1819NAS-EF1819NAU-EF1819AW-EF1819AS-EF1819AU) |
| AHWFNAW3 = | AHWF2024NAW* (EF2024 -EF2024NAS-EF2024NAU-EF2024AW-EF2024AS-EF2024AU) |
| AHWFNAW4 = | AHWF2534NAW* (EF2534-EF2534NAS-EF2534NAU-EF2534AW-EF2534AS-EF2534AU) |
| AHWFNAW5 = | AHWF3544NAW* (EF3544 -EF3544NAS-EF3544NAU-EF3544AW-EF3544AS-EF3544AU) |
| AHWFNAW6 = | AHWF4554NAW* (EF4554-EF4554NAS-EF4554NAU-EF4554AW-EF4554AS-EF4554AU) |
| AHWFNAW7 = | AHWF5564NAW* (EF5564 -EF5564NAS-EF5564NAU-EF5564AW-EF5564AS-EF5564AU) |
| AHWFNAW8 = | AHWF65ONAW * (EF65O -EF65ONAS-EF65ONAU-EF65OAW-EF65OAS-EF65OAU) |
| AHWFNAW = | (AHWFNAW1 + AHWFNAW2 + AHWFNAW3 + AHWFNAW4 + AHWFNAW5 + AHWFNAW6 + AHWFNAW7 + AHWFNAW8) / (EF - EFNAS - EFNAU - EFAW - EFAS - EFAU |
| AHWF1617NAW = | $17.2598 * \text { MOVAVG (2, RTP.1) }+7.31262 * \operatorname{MOVAVG}(2, \text { RTP. })-24.9241 * \text { RNF1617S }+16.9218+$ AHWF1617NAW.ADJ |
| AHWF1819NAW $=$ | 18.7922 * MOVAVG (2, RTP.1) + 13.1066 * MOVAVG (2, RTP.5) - 18.9417 * RNF1819S - 16.2182 * PF1819 + $0.81920 * 1+16.7826+$ AHWF1819NAW.ADJ |
| AHWF2024NAW = | $\begin{aligned} & -219.154 * \text { PF2024 }+12.4226 * \text { MOVAVG }(2, \text { RTP.1 })-0.98470 * 1+158.354 *(\text { PF2024 })^{2}+98.6034+ \\ & \text { AHWF2024NAW.ADJ } \end{aligned}$ |
| AHWF2534NAW = | $\begin{aligned} & -39.2904 * \text { PF2534 }+39.6515 *(\text { PF2534 })^{2}+9.10839 * \text { MOVAVG }(2, \text { RTP. } 1)-0.33503 * 1+35.8525+ \\ & \text { AHWF2534NAW.ADJ } \end{aligned}$ |
| AHWF3544NAW = | $\begin{aligned} & -39.2904 * \text { PF3544 }+39.6515 *(\text { PF3544 })^{2}+7.40115 * \text { MOVAVG }(2, \text { RTP. } 1)-0.38214 * 1+36.9133+ \\ & \text { AHWF3544NAW.ADJ } \end{aligned}$ |
| AHWF4554NAW = | 8.64511 * MOVAVG (2, RTP.1) - 63.8042 * PF4554 + 59.9107 * (PF4554) ${ }^{2}-0.58355 * 1+44.0723+$ AHWF4554NAW.ADJ |
| AHWF5564NAW = | 6.61506 * MOVAVG (2, RTP.1) -0.28969 * $1+8.36882$ * PF5564 + 24.8288 + AHWF5564NAW.ADJ |
| AHWF65ONAW = | $-0.43916 * 1+26.5228+(8.36882 / 2) *($ PF65O-0.086 $)+$ AHWF65ONAW.ADJ |
| Nonagricultural Self-employed |  |
| AHWNAS = | 24.9592 * MOVAVG (2, RTP.1) - 17.2194 * EFNAS/ENAS + 22.0120 + AHWNAS.ADJ |
| Nonagricultural Unpaid Family Workers |  |
| AHWNAU = | 25.5124 * (EF2534NAU + EF3544NAU + EF4554NAU)/ ENAU + 19.2730 + AHWNAU.ADJ |
| Agricultural sector |  |
| AHWA = | (AHWAW * EAW + AHWAS * EAS + AHWAU * EAU) / EA |
| Agricultural Wage Workers |  |
| AHWAW = | 6.58073 * MOVAVG (2, RTP.1) + 14.9130 * MOVAVG (2, RTP.5) + 19.7800 + AHWAW.ADJ |
| Agricultural Self-employed |  |
| AHWAS = | 2.45830 * PGDPAF/PGDP - 3.61107 * $1+44.5318$ + AHWAS.ADJ |
| Agricultural Unpaid AHWAU = | Family Workers $39.3563 \text { + AHWAU.ADJ }$ |

AHWAU $=\quad 39.3563+$ AHWAU.ADJ
OTHER EMPLOYMENT MEASURES
Federal Civilian Government and Government Enterprises
EGFC $=\quad$ IF LONGRANGE $=0$
THEN (EGFC. 1 * $1.0094^{0.25}$ )
ELSE (EGFC. 1 * (E_FE/E_FE.1))
EGEFCPS $=$ IF LONGRANGE $=0$
THEN (EGEFCPS. 1 * $1.0075^{0.25}$ )
ELSE (EGEFCPS. 1 * (E_FE/E_FE.1))
EGGEFC $=$ EGFC + EGEFCPS

| State and Local Government and Government Enterprises |  |
| :--- | :--- |
| EGGESL $=$ | IF LONGRANGE $=0$ |
|  | THEN EGGESL. $1 *\left(\right.$ LC_FE/LC_FE.4) ${ }^{0.25}$ |
|  | ELSE EGGESL. $1 *($ E_FE/E_FE.1) |
| Military |  |
| DNEDMIL $=$ | IF (EDMIL-EDMIL.4) $<0$ |
|  | THEN (EDMIL-EDMIL.4) |
|  | ELSE 0 |
| EP $=$ | E-EGGESL - EGGEFC - EAS - ENAS |

Compensation and Output Sectors

Price Deflator for Medical Services
CPIWMS $=$ CPIWMS. $1 *\left(1+\left((\text { CPIW_U/CPIW_U.4 })^{0.25}-1\right) *\right.$ CPIWMSWT $)$

| Unemployment Insurance and Workers Compensation Effective Tax Rates |  |
| :---: | :---: |
| TMAXUI_SL = | TMAXUI_SL. 1 *AWSUI.1/AWSUI. 2 |
| RELMAX_UI = | TMAXUI_SL/AWSUI.1/1000 |
| CR_UI = | 0.775 |
| TRATIO_UI = | 0.96996 * RELMAX_UI-0.13744 * MOVAVG (4, RTP.1) + 0.10368 * MOVAVG (4, RTP.5) + 0.04887 |
| TRATE_UI = | 0.00143 * MOVAVG (4, RU.5) + 0.00128 * MOVAVG (4, RU.9) + 0.00057 * MOVAVG (4, RU. 13$)+0.00356$ |
| RUIWS1 = | CR_UI * TRATIO_UI * TRATE_UI |
| RUIWS2 = | 0.32476 * MOVAVG (4, RUIWS1.8 * (WSP. 8 -WSPRRB. 8 +WSGGESL.8)) / (WSP. 1 -WSPRR2. 1 +WSGGESL.1) |

Workers' Compensation
RWCWS = RWCWS. $1-($ RWCWS.1-0.0144)/12

State and Local Government and Government Enterprises TAXMAXQ = IF QTR = 1 THEN 300.* ROUND (MOVAVG (4, AWSE.5)/MOVAVG (4, AWSE.9) * 1000.* TAXMAX.1/300 +0.5)/1000 ELSE TAXMAX. 1

Wages
AWSPL $=$ MOVAVG (8, AWSP.1)
AWSSPL $=$ MOVAVG (8, AWSSP.1)
AWSGGESL $=$ IF LONGRANGE $=0$ THEN AWSGGESL. 1 * AWSPL/AWSPL. 1 ELSE AWSGGESL. 1 * AVG_GDP/AVG_GDP. 1 * $(1+\text { WS_TO_WSS_D/100 })^{0.25}$
WSGGESL $=$ AWSGGESL $*$ EGGESL

Employer Contribution for Government Social Insurance
OASDISL_L = (EMPTROASI + EMPTRDI) * 0.978 * CSLA * WSGGESL
HISL_L $=$ EMPTRHI * 1.0 * CSLHI * WSGGESL
SOC_UISL $=(-0.02821$ * MOVAVG (4, RTP.2) + 0.03145) * WSGGESL
RSOCSL_WC = RSOCSL_WC.1-(RSOCSL_WC.1-0.176)/12
SOC_WCSL = RSOCSL_WC * RWCWS * WSGGESL
SOC_SL $=($ OASDISL_L + HISL_L + SOC_UISL + SOC_WCSL)

Employer Contributions for Employee Pension and Insurance funds

Workers' Compensation - employees and annuitants
OLI_WCSL $=(1-$ RSOCSL_WC $) *$ RWCWS $*$ WSGGESL
Pensions
OLI_RETSL = WSGGESL * (OLI_RETSL.1/WSGGESL.1)

Life Insurance - employees and annuitants
OLI_GLI_SL $=2.0 *$ EGGESL $*((W S G G E S L / E G G E S L) ~+2.0) * 0.075 * 26 / 1000$

Health Insurance - employees and annuitants

```
OLI_GHI_SL = (OLI_GHI_SL.1 / EGGESL.1) * CPIWMS/CPIWMS.1 * EGGESL * RGR_GHI
Total
OLI_SL = (OLI_GLI_SL + OLI_GHI_SL + OLI_WCSL + OLI_RETSL)
RCWSSL = (1+ -(SOC_SL + OLI_SL)/WSGGESL)
WSSGGESL = IF LONGRANGE = 0
 THEN RCWSSL*WSGGESL
 ELSE (WSSGGESL.1/EGGESL.1) * AVG_GDP/AVG_GDP.1 * EGGESL
WSSGSL = WSSGGESL * WSSGSL.1/WSSGGESL. }
WSSGESL = WSSGGESL - WSSGSL
CFCGSL = IF LONGRANGE =0
 THEN WSSGSL * RCFCGSL
 ELSE CFCGSL.1 * WSSGGESL/WSSGGESL. }
GDPGSL = WSSGSL + CFCGSL
CFCGESL = IF LONGRANGE =0
 THEN WSSGESL * RCFCGESL
 ELSE CFCGESL. 1 * WSSGGESL/WSSGGESL. }
GDPGESL = WSSGESL + CFCGESL
GDPGGESL = GDPGSL + GDPGESL
```

Federal Civilian General Government and Government Enterprises
Wages
General Government and Government Enterprises
Civilian pay raise
CRAZ1 $=\quad$ IF LONGRANGE $=0$
THEN ((IF QTR = 1 THEN ( 0.82429 * (AWSP.6/AWSP.10-1) -0.005) ELSE 0))
ELSE (IF QTR = 1 THEN (AWSP.6/AWSP. 10 - 1) ELSE 0)
Military pay raise
$\mathrm{MRAZ}=\quad$ IF LONGRANGE $=0$
THEN ((IF QTR = 1 THEN ( 0.82429 * (AWSP.6/AWSP. $10-1$ ) -0.005) ELSE 0))
ELSE (IF QTR = 1 THEN (AWSP.6/AWSP. 10 - 1) ELSE 0)
AWSGGEFC $=$ IF LONGRANGE $=0$
THEN (AWSGGEFC. 1 * ( $1+1.0$ *CRAZ1 +0.0015) )
ELSE AWSGGEFC. 1 * AVG_GDP/AVG_GDP. 1 * $\left(1+W S \_T O \_W S S \_D / 100\right)^{0.25}$
WSGGEFC $=$ AWSGGEFC $*$ EGGEFC

CSRS workers
AWEFC_N $=$ IF LONGRANGE $=0$
THEN (AWEFC_N. 1 * (1 +1.0 *CRAZ1 +0.00082))
ELSE AWEFC_N. 1 * AVG_GDP/AVG_GDP. 1 * $\left(1+W S \_T O \_W S S \_D / 100\right)^{0.25}$
WEFC_N = AWEFC_N * TEFC_N

```
Government Enterprises (Mostly U.S. Postal Service)
AWSGEFC = IF LONGRANGE = 0
 THEN (AWSGEFC. 1 * (1 +1.0 *CRAZ1 +0.0015))
 ELSE AWSGEFC.1 * AVG_GDP/AVG_GDP.1 * (1 +WS_TO_WSS_D/100) 0.25
WSGEFC = AWSGEFC * EGEFCPS
```

General Government
WSGFC $=\quad$ WSGGEFC -WSGEFC
AWSGFC $=$ WSGFC/EGFC

Employer Contribution for Government Social Insurance
General Government and Government Enterprises


General Government and Government Enterprises
RCWSF $=\quad(1+($ SOC_FC + OLI_FC $) / W S G G E F C)$

WSSGGEFC $=$ IF LONGRANGE $=0$
THEN RCWSF * WSGGEFC
ELSE (WSSGGEFC.1/EGGEFC.1) * AVG_GDP/AVG_GDP. 1 * EGGEFC
WSSGFC $=\quad$ IF LONGRANGE $=0$
THEN RCWSF * WSGFC
ELSE (WSSGFC. 1 / (EGGEFC. 1 - EGEFCPS.1)) * AVG_GDP/AVG_GDP. 1 * (EGGEFC - EGEFCPS)
WSSGEFC $=$ IF LONGRANGE $=0$
THEN RCWSF * WSGEFC
ELSE (WSSGEFC.1/EGEFCPS.1) * AVG_GDP/AVG_GDP. 1 * EGEFCPS

Consumption of Fixed Capital
General Government and Government Enterprises
CFCGFC $=\quad$ IF LONGRANGE $=0$
THEN WSSGFC * RCFCGFC ELSE CFCGFC. 1 * WSSGGEFC / WSSGGEFC. 1
CFCGEFC $=\quad$ IF LONGRANGE $=0$
THEN WSSGEFC * RCFCGEFC
ELSE CFCGEFC. 1 * WSSGGEFC / WSSGGEFC. 1

## Gross Domestic Product

```
General Government and Government Enterprises
GDPGFC = WSSGFC + CFCGFC
GDPGEFC = WSSGEFC + CFCGEFC
GDPGGEFC = GDPGFC + GDPGEFC
```

Federal Government Military

```
Wages
AWSGFM = IF LONGRANGE = 0
 THEN (AWSGFM.1 * (1.0027 +1.0 * MRAZ))
```

```
 ELSE AWSGFM.1 * AVG_GDP/AVG_GDP. 1 * (1 + WS_TO_WSS_D/100) }\mp@subsup{}{}{0.25
WSGFM = AWSGFM * (EDMIL+ EDMIL_R)
Employer Contribution for Government Social Insurance
OASDIFM_L = (EMPTROASI + EMPTRDI) * 0.9975 * CML * WSGFM
HIFM_L = EMPTRHI* 1.0 *CML * WSGFM
SOCF_UIFM = MAX (0.001, (-0.05263 * DIFF (EDMIL + EDMIL_R) - 0.03079 * RTP + 0.03310)) * WSGFM
SOCF_MIFM = 0.30 * CPIWMS * (EDMIL + EDMIL_R)
SOC_FM = (SOCF_UIFM + SOCF_MIFM + OASDIFM_L + HIFM_L)
Employer Contributions for Employee Pension and Insurance funds
OLI_RETFM = (OLI_RETFM.1/WSGFM.1 - (OLI_RETFM.1/WSGFM.1 - 0.472)/12) * WSGFM
Compensation
RCWSM = (1 + (OLI_RETFM + SOC_FM)/WSGFM)
WSSGFM = IF LONGRANGE = 0
 THEN RCWSM * WSGFM
 ELSE (WSSGFM.1/EDMIL.1) * AVG_GDP/AVG_GDP.1 * EDMIL
```

Consumption of Fixed Capital
CFCGFM $=\quad$ IF LONGRANGE $=0$
THEN WSSGFM * RCFCGFM
ELSE CFCGFM. 1 * WSSGFM/WSSGFM. 1

| Gross Domestic Product |  |
| :--- | :--- |
| GDPGFM $=$ | WSSGFM + CFCGFM |
| GDPGF $=$ | GDPGFC + GDPGFM |
| GDPGGE $=$ | GDPGGEFC + GDPGGESL + GDPGFM |

Total (Civilian and Military) Federal General Government and Government Enterprises
WSSGF = WSSGFC + WSSGFM
WSSGE = WSSGEFC + WSSGESL
WSSG = WSSGF + WSSGSL
GDPGE = GDPGEFC + GDPGESL
GDPG $=$ GDPGF + GDPGSL
NIPA Farm Output and Earnings
GDPPF00 $=\quad$ IF LONGRANGE $=0$
THEN EXP (- $3.52340+0.02055$ * YEAR) * N_SSA
ELSE GDPPF00.1 * GDP00/GDP00.1
PGDPAF $=\quad$ IF LONGRANGE $=0$
THEN PGDPAF. 1 * ((PGDP/PGDP.1) $\left.{ }^{4}-0.01\right)^{0.25}$
ELSE PGDPAF. 1 * ((PGDP/PGDP.1) $\left.)^{4}\right)^{0.25}$
GDPPF $=\quad$ GDPPF00 $*$ PGDPAF
AYF_K $=\quad(($ YF. $1 / E A S .1) /($ WSSPF.1/EAW.1 $)-1.594) * 0.8+1.594$
WSSPF $=\quad$ IF LONGRANGE $=0$
THEN EAW * MOVAVG (4, WSSP.2/EP.2) * (3.15749 / (YEAR-65) - 0.43419 * RTP + 0.68725)
ELSE (WSSPF.1/EAW.1) * AVG GDP/AVG GDP. 1 * EAW
WSPF $=\quad$ IF LONGRANGE $=0$
THEN WSSPF * (MOVAVG (12, (WSP.1/WSSP.1)) + 0.015)
ELSE (WSPF. 1 /WSSPF.1) * (WSP.1/WSSP.1) / (WSP.2/WSSP.2) * WSSPF
AWSPF = WSPF/EAW
$\mathrm{YF}=\quad$ AYF_K $*(W S S P F / E A W) * E A S$

GDP, WSS and WS, Private Households \& Nonprofit Institutions
Private Households
Compensation \& Wages

```
WSSPH = IF LONGRANGE = 0
 THEN (((WSSPH.1/ENAWPH.1)/MOVAVG (4, WSSP.3/EP.3) - 0.41) * 0.875 + 0.41) * MOVAVG (4, WSSP.2/EP.2) *
ENAWPH
 ELSE (AVG_GDP/AVG_GDP.1) * ENAWPH * (WSSPH.1/ENAWPH.1)
WSPH = IF LONGRANGE =0
 THEN WSSPH / (1 +CPH* 1 * (EMPTROASI + EMPTRDI + EMPTRHI))
 ELSE (AWSPH.1 * ENAWPH.1/WSSPH.1) * (1 + WS_TO_WSS_D/100) 0.25 * WSSPH
AWSPH =
 WSPH / ENAWPH
```

Owner Occupied Housing
$\mathrm{OOH}=\mathrm{OOH} .1$ * (KGDP00 * PGDP) $/(\mathrm{KGDP00.1} *$ PGDP.1)
Gross Value Added
GDPPH $=$ IF LONGRANGE $=0$
THEN WSSPH + OOH
ELSE (AVG_GDP/AVG_GDP.1) * ENAWPH * (GDPPH.1/ENAWPH.1)

Nonprofit Institutions
Health Services
EPHS_EST $=$ IF LONGRANGE $=0$
THEN EPHS_EST. 1 + 0.275/4
ELSE EPHS_EST. 1 * (E_FE/E_FE.1)
AWSSPHS $=$ IF LONGRANGE $=0$
THEN AWSSPHS. 1 * AWSSPL/AWSSPL. 1
ELSE AWSSPHS. 1 * AVG_GDP/AVG_GDP. 1
WSSPHS $=$ AWSSPHS*EPHS_EST
Educational Services
EPES_EST $=$ IF LONGRANGE $=0$
THEN EPES_EST. $1+0.075 / 4$
ELSE EPES_EST. 1 * (E_FE/E_FE.1)
AWSSPES $=$ IF LONGRANGE $=0$
THEN AWSSPES. 1 * AWSSPL/AWSSPL. 1
ELSE AWSSPES. 1 * AVG_GDP/AVG_GDP. 1
WSSPES $=$ AWSSPES* EPES_EST
Social Services
EPSS_EST $=$ IF LONGRANGE $=0$
THEN EPSS_EST. $1+0.075 / 4$
ELSE EPSS_EST. 1 * (E_FE/E_FE.1)
AWSSPSS $=$ IF LONGRANGE $=0$
THEN AWSSPSS. 1 * AWSSPL/AWSSPL. 1
ELSE AWSSPSS. 1 * AVG_GDP/AVG_GDP. 1
WSSPSS = AWSSPSS*EPSS_EST

Gross Value Added
WSSPNI $=\quad$ WSSPNI. $1 *($ WSSPHS + WSSPES + WSSPSS $) /($ WSSPHS. $1+$ WSSPES. $1+$ WSSPSS. 1$)$
WSPNI $=\quad$ IF LONGRANGE $=0$
THEN WSSPNI * (WSPNI.1/WSSPNI.1) * ((WSP.1/WSSP.1) / (WSP.9/WSSP.9)) ${ }^{(1 / 8)}$
ELSE WSSPNI * (WSPNI.1/WSSPNI.1) * (1 +WS_TO_WSS_D/100) ${ }^{0.25}$
GDPPNI $=\quad$ IF LONGRANGE $=0$
THEN WSSPNI / ((WSSPNI.1/GDPPNI. $1-0.866) * 0.8+0.866)$
ELSE WSSPNI /0.866

Private Output and Compensation

```
ROASDIP_L = (EMPTROASI + EMPTRDI) * TXRP * CP
RHIP_L = EMPTRHI * 1.0 * CP
RSOC_UIP = 0.00109 * MOVAVG (4, RU.2) + 0.00045 * MOVAVG (4, RU.10) + 0.00048 * MOVAVG (4, RU.18) - 0.00331
RSOC_WCP = RWCWS * RSOCSL_WC
```

RSOCF_PBG $=0.00022$

```
OLI
ROLI_WCP = RWCWS * (1 - RSOCSL_WC)
ROLI_SU = 0.0005
OLI_GLI_P = 0.0025 * EP * AWSP. }
OLI_GHI_P = (OLI_GHI_P.1 / EP.1) * CPIWMS/CPIWMS.1 * EP * RGR_GHI
ROLI_PPPS = MAX (ROLI_PPPS.1, 0.00031 * YEAR + 0.00866)
```

Employee Compensation and Non-Farm Proprietor Income (WSS and YNF)


Other Variables

| WSD | WS |
| :---: | :---: |
| WSDP | (WSD -WSGGESL - WSGGEFC - WSGFM) |
| AWSE | WS / (E + EDMIL - EAS - ENAS) |
| AWSUI | (WS -WSGGEFC -WSGFM) / (E - EGGEFC - EAS - ENAS) |
| WSS | (WSSP + WSSGGE) |
| OLI | OLI_GGE + OLI_P |
| SOC | SOC_GGE + SOC_P |
| OLI_GGE | OLI_FC + OLI_SL + OLI_RETFM |
| SOC_GGE | SOC_FC + SOC_FM + SOC_SL |
| SOC_UIP | RSOC_UIP * WSP |
| SOC_WCP | RSOC_WCP * WSP |
| OASDIP_L | ROASDIP_L * WSP |
| HIP_L | RHIP_L * WSP |
| SOCF_PBG | RSOCF_PBG * WSP |
| SOCF_RETRR | 0.20 * WSPRRB |
| SOC_P | SOC_UIP + SOC_WCP + OASDIP_L + HIP_L + SOCF_PBG + SOCF_RETRR |
| OLI_WCP | ROLI_WCP * WSP |
| OLI_SU | ROLI_SU * WSP |
| OLI_PPPS | ROLI_PPPS * WSP |
| OLI_P | OLI_WCP + OLI_SU + OLI_GHI_P + OLI_GLI_P + OLI_PPPS |
| OLI_PPS | OLI_PPPS + OLI_RETFC + OLI_RETFM + OLI_RETSL |
| OLI_GHI | OLI_GHI_P + OLI_GHI_FC + OLI_GHI_SL |
| OLI_GLI | OLI_GLI_P + OLI_GLI_FC + OLI_GLI_SL |
| OLI_WC | OLI_WCP + OLI_WCSL |
| SOCSL_WC | SOC_WCSL + SOC_WCP |
| SOCF_UIFED | SOCF_UIFC + SOCF_UIFM |

SOCF_UIS = (SOC_UIP + SOC_UISL) * RUIWS1 / (RUIWS1 + RUIWS2)
SOCF_UIF = (SOC_UIP + SOC_UISL) - SOCF_UIS
SOCF_OASDI $=$ OASDIP_L + OASDISL_L + OASDIFC_L + OASDIFM_L
SOCF_HI = HIP_L + HISL_L + HIFC_L + HIFM_L

### 2.3 OASDI Covered Employment and Earnings (COV)

Total At-Any-Time Employment
Males
Aged 1 through 9
CEM1 $=0.00026 *$ NM1
CEM2 $=0.00031 *$ NM2
CEM3 $=0.00025 *$ NM3
CEM4 $=0.00019 *$ NM4
CEM5 $=0.00036 *$ NM5
CEM6 $=0.00042 *$ NM6
CEM7 $=0.00165 *$ NM7
CEM8 $=0.00239 *$ NM8
CEM9 $=0.00279 *$ NM9

Aged 10 through 15
TEM1013 $=0.01969$ * (NM10 + NM11 + NM12 + NM13 + NM10[+1] + NM11[+1] + NM12[+1] + NM13[+1])/2
TEM1415 $=(0.42767 *$ RTP $-1.02624 *$ NM1415 $/(\mathrm{NM} 1415+\mathrm{NM} 1617)+0.23102) *((\mathrm{NM} 14+\mathrm{NM} 15+\mathrm{NM} 14[+1]+\mathrm{NM} 15[+1]) / 2)$

Females
Aged 1 through 9
CEF1 $=0.00028 *$ NF1
CEF2 $=0.00023 *$ NF2
CEF3 $=0.00020 *$ NF3
CEF4 $=0.00031 *$ NF4
CEF5 $=0.00041 *$ NF5
CEF6 $=0.00055$ * NF6
CEF7 $=0.00129 *$ NF7
CEF8 $=0.00156 *$ NF8
CEF9 $=0.00212 *$ NF9

Aged 10 through 15
TEF1013 = IF YEAR $<=110$
THEN (0.04615 * RTP - 0.00014 * YEAR - 0.02268) * (NF10 + NF11 + NF12 + NF13 + NF10[+1] + NF11[+1] + NF12[+1] + NF13[+1])/2

ELSE (0.04615 * RTP - 0.00014 * 110-0.02268) * (NF10 + NF11 + NF12 + NF13 + NF10[+1] + NF11[+1] + NF12[+1] + NF13[+1])/2
TEF1415 $=(0.48500 *$ RTP $-0.79002 *$ NF1415 $/(N F 1415+$ NF1617 $)+0.02205) *((N F 14+N F 15+N F 14[+1]+N F 15[+1]) / 2)$

Total Males, Total Females and Combined Total

| TEM | $=$ CEM1 + CEM2 + CEM3 + CEM4 + CEM5 + CEM6 + CEM7 + CEM8 + CEM9 + TEM1013 + TEM1415 + TEM16O |
| :--- | :--- | :--- |
| TEF | $=$ CEF1 + CEF2 + CEF3 + CEF4 + CEF5 + CEF6 + CEF7 + CEF8 + CEF9 + TEF1013 + TEF1415 + TEF16O |

$\mathrm{TE}=\mathrm{TEM}+\mathrm{TEF}$

Male Disaggregates Aged 16 and Over

| TEM1617 | $\begin{aligned} & =\quad(-0.0337-1.32778 * \text { REM1617_A }+1.11118+\text { RNM1617MAX- } 0.5 * 0.0637-0.161 * \text { RILEM1519 }) *(\text { EM1617 } \\ & * \text { REM1617_M } * \text { REM2_1617-EM1617AU }- \text { EM1617NAU }+ \text { NM1617M }) \end{aligned}$ |
| :---: | :---: |
| TEM1819 | $\begin{aligned} & =(-0.0267-0.60094 * \text { REM1819_A + 0.89703 + RNM1819MAX-0.5 } * 0.0637-0.265 * \text { RILEM1519 }) *(\text { EM1819 } \\ & * \text { REM1819_M } * \text { REM2_1819-EM1819AU- EM1819NAU + NM1819M }) \end{aligned}$ |
| TEM2024 | ```= (-0.0196 + 0.02072 + 0.82020 + RNM2024MAX-0.50 * 0.0176-0.357 * RILEM2024 -0.80 * (REM2024_A + RM2024D)) * (EM2024 * REM2024_M * REM2_2024 - EM2024AU - EM2024NAU + NM2024M)``` |
| TEM2529 | ```= (-0.0113 + 0.02898 + 0.81312 + RNM2529MAX-0.50 * 0.0214-0.416 * RILEM2529-0.80 * (REM2529_A + RM2529D)) * (EM2529 * REM2529_M * REM2_2529 - EM2529AU - EM2529NAU + NM2529M)``` |
| TEM3034 | $\begin{aligned} & =(0.0062-0.00445+0.55577+\text { RNM3034MAX-0.50 } * 0.0416-0.424 * \text { RILEM3034-0.50 } *(\text { REM3034_A + RM3034D })) \\ & *(\text { EM3034 } * \text { REM3034_M * REM2_3034 - EM3034AU }- \text { EM3034NAU + NM3034M }) \end{aligned}$ |
| TEM3539 | $\begin{aligned} & =\quad(-0.0092+0.00162+0.50480+\text { RNM3539MAX- } 0.50 * 0.0279-0.423 * \text { RILEM3539 -0.45 * (REM3539_A + } \\ & \text { RM3539D) }) *(\text { EM3539 * REM3539_M } * \text { REM2_3539 - EM3539AU - EM3539NAU + NM3539M) } \end{aligned}$ |


| 4044 | $=(-0.0083+0.01717+0.41973+$ RNM4044MAX-0.50 * 0.0062-0.418 * RILEM4044-0.40 * (REM4044_A + |
| :---: | :---: |
|  |  |
| TEM4549 | $\begin{aligned} & =\quad(-0.0026-0.00292+0.52707+\text { RNM4549MAX-0.50 * 0.0010-0.410*RILEM4549-0.50 * (REM4549_A + } \\ & \text { RM4549D) })^{*}(\text { EM4549 * REM4549_M } * \text { REM2_4549 - EM4549AU-EM4549NAU }+ \text { NM4549M) } \end{aligned}$ |
| TEM5054 | $\begin{aligned} & =(-0.0008+0.02301+0.53226+\text { RNM5054MAX }-0.50 * 0.0025-0.395 * \text { RILEM5054-0.50 * (REM5054_A + } \\ & \text { RM5054D)) } \end{aligned}$ |
| TEM5559 | ```* (EM5054 * REM5054_M * REM2_5054 -EM5054AU-EM5054NAU + NM5054M) = (-0.0010-0.00842 + 0.46888 + RNM5559MAX - 0.50 * 0.0042-0.356 * RILEM5559 -0.40 * (REM5559_A + RM5559D))* (EM5559 * REM5559_M * REM2_5559 -EM5559AU-EM5559NAU + NM5559M)``` |
| TEM6064 | $\begin{aligned} & =(-0.0030+0.04966+0.59056+\text { RNM6064MAX }-0.50 * 0.0051-0.248 * \text { RILEM6064 - } 0.50 *(\text { REM6064_A + } \\ & \text { RM6064D) }) *(\text { EM6064 * REM6064_M * REM2_6064-EM6064AU-EM6064NAU) } \end{aligned}$ |
| TEM6569 | $(-0.82949$ * REM6569_A + $0.10116+1.55172) *($ EM6569 * REM6569_M * REM2_6569 - EM6569AU - EM6569NAU $)$ |
| TEM700 | (0.01973 * 96-0.34903) * (EM700* REM70O_M * REM2_700-EM70OAU-EM700NAU) |
| TEM16O | $=$ TEM1617 + TEM1819 + TEM2024 + TEM2529 + TEM3034 + TEM3539 + TEM4044 + TEM4549 + TEM5054 + TEM5559 + TEM6064 + TEM6569 + TEM700 |

Female Disaggregates Aged 16 and Over
TEF1617 $=(0.0106-1.52661 *$ REF1617_A $-0.02280+1.17229+$ RNF1617MAX $+0.5 * 0.0631-0.161 *$ RILEF1519 $) *($ EF1617 * REF1617_M * REF2_1617 - EF1617AU - EF1617NAU + NF1617M)

TEF1819 $=(0.0166-0.56521 *$ REF1819_A $+0.04837+0.85527+$ RNF1819MAX-0.5 * 0.0631-0.252 * RILEF1519) * (EF1819 * REF1819_M * REF2_1819 - EF1819AU - EF1819NAU + NF1819M)

TEF2024 $=(0.0202+0.02418+0.89686+$ RNF2024MAX $-0.50 * 0.0349-0.318 *$ RILEF2024-0.90 * (REF2024_A + RF2024D) $)$ * (EF2024 * REF2024_M * REF2_2024 - EF2024AU - EF2024NAU + NF2024M)

TEF2529 $=(0.0185+0.03554+0.68431+$ RNF2529MAX $-0.50 * 0.0378-0.342 *$ RILEF2529-0.70 * (REF2529_A + RF2529D) $)$ * (EF2529 * REF2529_M * REF2_2529 - EF2529AU - EF2529NAU + NF2529M)

TEF3034 $=(0.0156+0.00488+0.47083+$ RNF3034MAX - 0.50 * 0.0465-0.340 * RILEF3034-0.45 * (REF3034_A + RF3034D)) * (EF3034 * REF3034_M * REF2_3034 - EF3034AU - EF3034NAU + NF3034M)

TEF3539 $=(0.0156+0.000796+0.41423+$ RNF3539MAX $-0.50 * 0.0318-0.343 *$ RILEF3539-0.40 * (REF3539_A + RF3539D)) * (EF3539 * REF3539_M * REF2_3539 - EF3539AU - EF3539NAU + NF3539M)

TEF4044 $=(0.0127+0.00312+0.35298+$ RNF4044MAX - 0.50 * 0.0135-0.353 * RILEF4044-0.35 * (REF4044_A + RF4044D)) * (EF4044 * REF4044_M * REF2_4044 - EF4044AU - EF4044NAU + NF4044M)

TEF4549 $=(0.0064+0.00138+0.40080+$ RNF4549MAX - 0.50 * 0.0086-0.358 * RILEF4549-0.40 * (REF4549_A + RF4549D)) * (EF4549 * REF4549_M * REF2_4549 - EF4549AU - EF4549NAU + NF4549M)

TEF5054 $=(0.0037+0.01202+0.39021+$ RNF5054MAX - 0.50 * 0.0089-0.336 * RILEF5054-0.40 * (REF5054_A + RF5054D)) * (EF5054 * REF5054_M * REF2_5054 - EF5054AU - EF5054NAU + NF5054M)

TEF5559 $=(0.0034+0.03036+0.32074+$ RNF5559MAX - 0.50 * 0.0094-0.280 * RILEF5559-0.30 * (REF5559_A + RF5559D)) * (EF5559 * REF5559_M * REF2_5559 - EF5559AU - EF5559NAU + NF5559M)

TEF6064 $=(0.0030+0.02068+0.49318+$ RNF6064MAX $-0.50 * 0.0115-0.176 *$ RILEF6064-0.45 * (REF6064_A + RF6064D) $)$ * (EF6064 * REF6064_M * REF2_6064 - EF6064AU - EF6064NAU)

TEF6569 $=1.42$ * (EF6569 * REF6569_M * REF2_6569 - EF6569AU - EF6569NAU)
TEF70O $=(0.92002 *$ TEM70O $/(E M 700 *$ REM70O_M * REM2_70O - EM70OAU - EM70ONAU $)+0.12035) *($ EF70O * REF70O_M * REF2_700-EF70OAU-EF70ONAU)

TEF16O $=$ TEF1617 + TEF1819 + TEF2024 + TEF2529 + TEF3034 + TEF3539 + TEF4044 + TEF4549 + TEF5054 + TEF5559 + TEF6064 + TEF6569 + TEF70O

Self-Employed Only

| SEOCMB | $=$ | $0.039 *($ TEFC_N_N + TESL_N_N + EPRRB) |
| :--- | :--- | :--- |
| SEOCMBL1 | $=0.039 *($ TEFC_N_N.1 + TESL_N_N.1 + EPRRB. 1$)$ |  |
| SEO | $=(S E O .1 *(E A S+$ ENAS $) /($ EAS. $1+$ ENAS.1 $)+($ SEOCMB - SEOCMBL1 $)) *$ MULTSEO |  |

Combination Workers
CMB_TOT $=((-0.01468+0.06227 *$ RTP. $1-0.0008) *$ WSWA - SEOCMB $) *$ MULTCMB
CSW_TOT = SEO + CMB_TOT
AW_CMBTOT $=1.4953 *$ ACWA
W_CMBTOT = AW_CMBTOT * CMB_TOT
CMB_WRELMAX = TAXMAX/AW_CMBTOT
CMB Wage Andover Curve
CMB_WAO1 = IF (CMB_WRELMAX $<0.0543009$ )
THEN 1-0.722659 * CMB_WRELMAX ${ }^{0.65}-0.461913$ * CMB_WRELMAX ${ }^{0.8}$
ELSE IF (CMB_WRELMAX $<0.1086018$ )
THEN -1.02884 * CMB_WRELMAX ${ }^{0.6}+0.324761$ * CMB_WRELMAX ${ }^{1.6}+1.02015$
ELSE IF (CMB_WRELMAX < 0.1629027)

```
 THEN -0.906607 * CMB_WRELMAXX 0.7 + 0.947662
 ELSE IF (CMB_WRELMAX < 0.2172037)
 THEN -0.813951 * CMB_WRELMAXX }\mp@subsup{}{}{0.55}+0.99172
 ELSE IF (CMB_WRELMAX < 0.3258055)
 THEN -0.755135 * CMB_WRELMAXX }\mp@subsup{}{}{0.55}+0.96459
 ELSE 0
CMB_WAO2 = IF (CMB_WRELMAX < 0.5430091)
 THEN -0.649755 * CMB_WRELMAXX }\mp@subsup{}{}{0.6}+0.88646
 ELSE IF (CMB_WRELMAX < 0.7059119)
 THEN -0.573205 * CMB_WRELMAX }\mp@subsup{}{}{0.7}+0.81012
 ELSE IF (CMB_WRELMAX < 0.9231155)
 THEN - 5.22264 * CMB_WRELMAX }\mp@subsup{}{}{0.06}+5.4751
 ELSE IF (CMB_WRELMAX < 1.0860183)
 THEN - 2.02619 * CMB_WRELMAXX 0.15 + 2.27963
 ELSE IF (CMB_WRELMAX < 1.5204256)
 THEN 0.605192 * EXP (-0.2 * CMB_WRELMAX) - 0.827158 * EXP (-0.8 * CMB_WRELMAX)
 + 1.52918 * EXP (-1.5 * CMB_WRELMAX) - 0.212269
 ELSE 0
CMB_WAO3 = IF (CMB_WRELMAX < 1.8462311)
 THEN 0.19139 * EXP (-0.6 * CMB_WRELMAX) + 0.764408 * EXP (- 1.8 * CMB_WRELMAX) + 0.0194903
 ELSE IF (CMB_WRELMAX < 2.3077888)
 THEN 0.12964 * EXP (-0.5 * CMB_WRELMAX) + 0.644861 * EXP (- 1.5 * CMB_WRELMAX) + 0.0183343
 ELSE IF (CMB_WRELMAX < 2.9865502)
 THEN 0.361318 * EXP (-0.8 * CMB_WRELMAX) + 0.0219491
 ELSE IF (CMB_WRELMAX < 4.3440731)
 THEN 0.193202 * EXP (-0.45 * CMB_WRELMAX) + 0.00425171
 ELSE IF (CMB_WRELMAX<5.4300913)
 THEN 0.0560412 * EXP (-0.25 * CMB_WRELMAX) +0.311286 * EXP (-0.8 * CMB_WRELMAX) +
 0.00297316
 ELSE 0
CMB_WAO4 = IF (CMB_WRELMAX < 13.5752283)
 THEN 0.0995677 * EXP (-0.32 * CMB_WRELMAX) + 0.00355234
 ELSE IF (CMB_WRELMAX < 21.7203653)
 THEN 0.041159 * EXP (-0.19 * CMB_WRELMAX) + 0.00156765
 ELSE IF (CMB_WRELMAX < 678.7614168)
 THEN 0.265022 * CMB_WRELMAX }\mp@subsup{}{}{(-1.555)
 ELSE 0
CMB_WAO = IF (CMB_WRELMAX < 0.3258055)
 THEN CMB_WAO1
 ELSE IF (CMB_WRELMAX < 1.5204256)
 THEN CMB_WAO2
 ELSE IF (CMB_WRELMAX < 5.4300913)
 THEN CMB_WAO3
 ELSE CMB_WAO4
CMB = (1-(CMB_WAO-0.019))* CMB_TOT
CSW = SEO + CMB
SEOCMB_HI = 0.039 * (TEFC_N_N + TESL_N_N_HI)
SEO_HI = SEO-SEOCMB_HI
CMB_HI = CMB_TOT + SEOCMB_HI
CSW_HI = SEO_HI + CMB_HI
```

NIPA Wages
Private Residual Sector
WSDPB $=W$ WSDP - WSPH - WSPF - WSPRRB - TIPS_SR
TIPS_SR $=(0.000508328 *$ RTP -0.000481700$) *$ GDP * 1.26393

## OASDI Wages



| ploy | ges |
| :---: | :---: |
| TESL | (TESL.1/EGGESLMAX.1) * EGGESLMAX |
| TESL_O | (TESL_O.1/TESL.1) * TESL |
| TESL_N | (TESL-TESL_O) |
| TESL_N_O | = (TESL_N_O_HI + TESL_N_O_NHI) |
| TESL_N_O_HI | (TESL_N - TESL_N_O_NHI - TESL_N_N_NHI) * CER_MQGE_O |
| TESL_N_O_NHI | = (TESL_N_O_NHI_S + TESL_N_O_NHI_E + TESL_N_O_NHI_NS) |
| TESL_N_S | $=\quad$ TESL_N_S. 1 * (NF1819 + NF2024 + NM1819 + NM2024) / (NF1819.1 + NF2024.1 + NM1819.1 + NM2024.1) |
| TESL_N_E | = TESL_N_E. 1 * (TESL / TESL. 1 ) |
| TESL_N_O_NHI_S | = TESL_N_S * (TESL_N_O_NHI_S.1/TESL_N_S.1) |
| TESL_N_O_NHI_E | TESL_N_E * 0.6 |
| TESL_N_O_NHI_NS | TESL_N_O_NHI_NS. 1 * ESR_NS |
| TESL_N_N | (TESL_N - TESL_N_O) |
| TESL_N_N_HI | (TESL_N_N - TESL_N_N_NHI) |
| TESL_N_N_NHI | (TESL_N_N_NHI_S + TESL_N_N_NHI_E + TESL_N_N_NHI_NS) |
| TESL_N_N_NHI_S | (TESL_N_S - TESL_N_O_NHI_S) |
| TESL_N_N_NHI_E | (TESL_N_E - TESL_N_O_NHI_E) |
| TESL_N_N_NHI_NS | TESL_N_N_NHI_NS. 1 * ESR_NS |
| WESL | (WESL.1/WSGGESL.1) * WSGGESL |
| WESL_O | (WESL_O.1/WSGGESL.1) * WSGGESL |
| WESL_N | (WESL - WESL_O) |
| WESL_N_HI | (WESL_N - WESL_N_NHI) |
| WESL_N_NHI | (WESL_N_NHI_S + WESL_N_NHI_E + WESL_N_NHI_NS) |
| WESL_N_NHI_S | WESL_N_NHI_S. 1 * (TESL_N_S/TESL_N_S.1) * (AWSGGESL/AWSGGESL.1) |
| WESL_N_NHI_E | WESL_N_NHI_E. 1 * (TESL_N_E/TESL_N_E.1) * (AWSGGESL/AWSGGESL.1) |
| RAWR_NS | = IF (AWR_NS = 0) THEN 0 ELSE AWR_NS/AWR_NS. 1 |
| WESL_N_NHI_NS | = IF (ESR_NS = 0) THEN 0 ELSE WESL_N_NHI_NS. 1 * (TESL_N_O_NHI_NS + TESL_N_N_NHI_NS) / (TESL_N_O_NHI_NS. 1 + TESL_N_N_NHI_NS.1) * (AWSGGESL/AWSGGESL.1) * RAWR_NS |

Self-Employed Earnings Sector

| Covered SENE |  |
| :---: | :---: |
| CSE_TOT | $=(\mathrm{YF}+\mathrm{YNF}) /(\mathrm{YF} .1+\mathrm{YNF} .1) *$ CSE_TOT. 1 |
| CSE_CMB_N | $\begin{aligned} & =(\text { CSE_TOT / (CMB_TOT + SEO)) / (CSE_TOT. } 1 /(\text { (CMB_TOT. } 1 \text { + SEO.1)) * (CSE_CMB_N. } 1 \text { / (CMB_TOT. } 1 \text {. } \\ & \text { CMB.1) }){ }^{*}(\text { (CMB_TOT - CMB) } \end{aligned}$ |
| CSE | = CSE_TOT - CSE_CMB_N |
| ACSE_SEO | $=\quad(\mathrm{CSE}$ _TOT $/(\mathrm{SEO}+0.416488 *$ CMB_TOT $)$ ) |
| ACSE_CMB_TOT | 0.416488 * ACSE_SEO |
| CSE_SEO | $=$ ACSE_SEO * SEO |
| CSE_CMB_TOT | $=$ ACSE_CMB_TOT ${ }^{*}$ CMB_TOT |
| CSE_CMB | = CSE_CMB_TOT - CSE_CMB_N |
| ACSE_CMB | $=$ CSE_CMB/CMB |


| Present Law OASDI and HI Covered Wages and Earnings |  |  |
| :---: | :---: | :---: |
| WSGMLC | $=$ | CML * WSGFM |
| WSGFCA | = | WEFC_O |
| CFCA | = | WSGFCA/WSGG |
| CSLHI | = | (WESL_O+WESL |
| WSGSLCA | = | WESL_O |
| WSPH_O | = | CPH * WSPH |


| WSPF_O | $=$ WSPF_O. 1 * WSPF/WSPF. 1 |
| :---: | :---: |
| CPF | $=$ WSPF_O/WSPF |
| WSPRR_O | CPRR * WSPRRB |
| CPB_ILL | $\begin{aligned} & =(\mathrm{CPB}) *\left(\text { WSWA } 0.86-\text { LOST_MF }^{=} /\left(\mathrm{WSWA} * 0.86+\text { LOST_MF }^{2}+(1.5 * 0.5) *(2.0 * \text { LOST_MF }) /(\text { WSWA * } 0.86+\right.\right. \\ & \text { LOST_MF }) \end{aligned}$ |
| CPB_ADJ | $\begin{aligned} & =\overline{\text { IF REAL_ACW_DYR }=0} \\ & \text { THEN CPB_ILL } \\ & \text { ELSE }(((\text { REAL_ACW_D }+ \text { PCH }(\text { CPIW_U })) / 100 \text { *ACWA. } 1+\text { ACWA. } 1) * \text { WSWA }- \text { WSPH_O }- \text { WSPF_O }- \text { WSPRR_O } \\ & \text {-TIPS_SR }- \text { WSGSLCA }- \text { WSGFCA }- \text { WSGMLC)/WSDPB } \end{aligned}$ |
| WSPB_O | $=\quad$ CPB_ADJ * WSDPB |
| WSPC | $=$ WSPH_O + WSPF_O + WSPRR_O + TIPS_SR + WSPB_O |
| CP | WSPC/WSDP |
| WSCA | $=($ WSPC + WSGSLCA + WSGFCA + WSGMLC $)$ |
| COVERNA | (WSCA + CSE) |
| ACWA | WSCA/WSWA |
| ASE | $=$ CSE/CSW |
| ASEHI | = CSE_TOT/CSW_HI |
| ACEA | $=$ COVERNA/TCEA |
| ACSLW | WESL_O/TESL_O * MULTACSLW |
| ACMW | ACMW. 1 * AWSGFM/AWSGFM. 1 * CML/CML. 1 |
| ACFCW | = WEFC_O/TEFC_O |
| ACFMW | $=$ ACFMW. $1 *$ (AIW.1/AIW.3) ${ }^{0.5}$ |
| TEPH_N | $=$ ENAWPH * (1-CPH) |
| TEP_N_N_S | $=\quad$ TEP_N_N_S. 1 * (NF1819 + NF2024 + NM1819 + NM2024) / (NF1819.1 + NF2024.1 + NM1819.1 + NM2024.1) |
| TCEA | $\begin{aligned} & =\left(T E-T E P H \_N-E P R R B-T E P \_N \_N \_S ~-~ T E P O \_N ~-~ T E S L \_N \_N \_N H I \_S ~-~ T E S L \_N \_N \_N H I \_E ~-~ T E S L \_N \_N \_N H I \_N S ~-~\right. \end{aligned} \text { TESL_N_N_HI - TEFC_N_N) }$ |
| WSWA | $=$ (TCEA-SEO) |


| Present Law HI Covered Wages and Earnings |  |  |
| :--- | :--- | :--- |
| WSCAHI_ADD | $=$ | WSCA * WSCAHI_ADD.1/WSCA.1 |
| TCEAHI | $=$ | (TCEA + TEFC_N_N + TESL_N_N_HI) |
| WSWAHI | $=$ | TCEAHI - SEO_HI |
| WSCAHI | $=$ | WSCA + WEFC_N + WESL_N_HI + WSCAHI_ADD |
| ACWAHI | $=$ | WSCAHI/WSWAHI |
| COVERNHI | $=$ | WSCAHI + CSE_TOT |
| ACEAHI | $=$ | COVERNHI/TCEAHI |


| Complete Coverage concepts |  |
| ---: | :--- |
| WSWC $=$ | $(W S W A H I+$ TEPH_N + EPRRB + TEP_N_N_S + TEPO_N + TESL_N_N_NHI) + LOST_MF |
| ACWC $=$ | WSD/WSWC |
| AIW $=$ | IF AIW_GR_YR $=0$ |
|  | $\quad$ THEN AIW. $1 *$ ACWC/ACWC. $1 *$ MULTAIW |
|  | ELSE AIW. $1 *(1+$ AIW_GR/100 $)$ |

Taxable Maximums

| RAIW | $=$ | AIW.2/AIWBASE |
| :--- | :--- | :--- |
| TAXMAXB1 | $=$ | RAIW * TMAXBASE $* 1000 / 300$ |
| TAXMAXB2 | $=$ | IF TAXMAXB1 - ROUND (TAXMAXB1) $>=0.5$ |
|  |  | THEN ROUND (TAXMAXB1) +1 |
|  | ELSE ROUND (TAXMAXB1) |  |
| TAXMAXB3 | $=$ | IF TAXMAXB2 $<$ TAXMAX. 1 |
|  |  | THEN TAXMAX. $1 * 1000 / 300$ |
|  | ELSE TAXMAXB2 |  |
| TAXMAX | $=\quad$ IF BENINC. $<=0.001$ |  |
|  | THEN TAXMAX. |  |
|  | ELSE 300 * TAXMAXB3/1000 |  |

Deemed Military Wage Credits
EDMILAF $=$ EDMIL $^{*} 1.1$

EDMILT $=(2.00303-50.7517 / Y E A R) *$ EDMILAF
EDMILR $=$ EDMILT - EDMILAF
MWC_ED_O $=1.2 *$ EDMILAF * 0.997
MWC_ED_HI $=1.2 *$ EDMILAF
$\operatorname{AMWC}$ _GO2 $=\operatorname{MIN}(1.2, \operatorname{AWSGFM} *(2 / 52) *(1 / 3))$
MWC_EDR_O $=$ AMWC_GO2 *EDMILR * (1-0.017)
MWC_EDR_HI= MWC_EDR_O + ((1.2 +AMWC_GO2) * 0.5) * EDMILR * 0.017
MWC_O = MWC_ED_O + MWC_EDR_O
MWC_HI = MWC_ED_HI ${ }^{\text {MWC_EDR_HI }}$

## 2-4 Effective Taxable Payroll (TAXPAY)

## 2-4.1 Ratio of taxable employee to total covered OASDI wages (RWTEE)

```
IF(RM.LT.0.439103091)THEN
 RWTEE=RM-(0.26651/1.5)*RM**1.5-(0.388274/1.9)*RM**1.9
ELSE IF(RM.LT.1.313896269)THEN
 RWTEE=(1.17877/1.5)*RM**1.5-(2.9291/0.68)*DEXP(-0.68*RM)-2.31401*RM+4.327630386
ELSE IF(RM.LT.2.570433485)THEN
 RWTEE=-(0.0202216/0.25)*DEXP(-0.25*RM)-(1.329/1.4)*DEXP(-1.4*RM)+0.00944271*RM+0.904661863
ELSE IF(RM.LT.4.418783378)THEN
 RWTEE=-(0.0654817/0.35)*DEXP(-0.35*RM)-(1.415/1.51)*DEXP(-1.51*RM)+0.000676576*RM+0.954098019
ELSE IF(RM.LT.14.73231225)THEN
 RWTEE=-(0.0110626/0.15)*DEXP(-0.15*RM)-(0.0472319/0.45)*DEXP(-0.45*RM)-(0.257195/0.95)*DEXP(-
0.95*RM)+0.000367645*RM+0.970880621
ELSE
 RWTEE=-(0.179935/0.75)*RM**(-0.75)+0.999970738
END IF
```

Where
RM = OASDI taxable maximum / average covered OASDI wage RWTEE $=$ Ratio if OASDI taxable employee to covered wages

2-4.2 Taxable employee OASDI wages (WTEE)
WTEE $=$ RWTEE $*$ WSC
Where
RWTEE = Ratio of OASDI taxable employee to covered wages
WSC = OASDI total covered wages
WTEE $=$ OASDI taxable employee wages

## 2-4.3 Ratio of multi-employer refund wages to total OASDI covered wages (RMER)

```
RMER = (MER(-1) / WSC(-1)) - 0.03217 * (RWTEE - RWTEE(-1)) - 0.00024*(RU - RU(-1))
```

Where
$\operatorname{MER}(-1)=$ Multi-employer refund wages in prior year
RMER $=$ Ratio of multi-employer refund wages to total OASDI covered wages
RU $=$ Annual average civilian unemployment rate
RWTEE = Ratio of OASDI taxable employee to covered wages
WSC(-1) $=$ OASDI total covered wages in prior year
2-4.4 Multi-employer refund wages (MER)
MER $=$ RMER * WSC
Where
MER = OASDI multi-employer refund wages
RMER $=$ Ratio of multi-employer refund wages to total OASDI covered wages
WSC $=$ OASDI total covered wages
2-4.5 Taxable employer OASDI wages (WTER)
WTER = WTEE + MER
Where
MER $=$ OASDI multi-employer refund wages
WTEE = OASDI taxable employee wages
WTER $=$ OASDI taxable employer wages
2-4.6 Ratio of taxable to covered self-employment earnings (RSET)

## Preliminary

```
BASECT = 47831.98
BASECW = 36831.79
BASEO = 23448.56
```


## Self-employed only

```
SECSEO = CSE - SECCMB
ASESEO = SECSEO / SEO
ASEO96 = ASESEO(1996)
ASESEO = ASESEO * BASEO / ASEO96
O = TAXMAX / ASESEO
IF(O.LT.0.021323273)THEN
 OTR=O-(401.8/3.8)*O**3.8
ELSE IF(O.LT.0.170586184)THEN
 OTR=(12.6861/1.1)*O**1.1-(10.7855/1.15)*O**1.15-(.208585/1.9)*O**1.9-1.58102*O-.0000212479
ELSE IF(O.LT.0.938224014)THEN
 OTR=-(2.03924/2.5)*DEXP(-2.5*O)+(2.52113/1.6)*O**1.6-(1.11979/2.2)*O**2.2-1.33547*O+.825500132
ELSE IF(O.LT.1.705861843)THEN
 OTR=-(.375957/.3)*DEXP(-.3*O)-(.642976/2.3)*DEXP(-2.3*O)-.108863*O+1.555087525
ELSE IF(O.LT.2.302913488)THEN
 OTR=-(.248596/.25)*DEXP(-.25*O)-(1.003/2.2)*DEXP(-2.2*O)-.0565126*O+1.368881905
ELSE IF(O.LT.3.624956417)THEN
 OTR=-(.207896/.15)*DEXP(-.15*O)-(3.99112/2.5)*DEXP(-2.5*O)-.0699402*O+1.823982598
ELSE IF(O.LT.5.970516451)THEN
 OTR=-(.110423/.2)*DEXP(-.2*O)-(.571353/1.25)*DEXP(-1.25*O)-.00842494*O+1.068478626
ELSE IF(O.LT.12.79396382)THEN
 OTR=-(.0631844/.2)*DEXP(-.2*O)-(.242063/.65)*DEXP(-.65*O)+.0011163*O+.947373543
ELSE IF(O.LT.21.32327304)THEN
 OTR=-(.0218297/.13)*DEXP(-.13*O)-(.0876571/.32)*DEXP(-.32*O)+.000522742*O+.966817185
ELSE IF(O.LT.213.2327304)THEN
 OTR=-(2.86725/1.36)*O**(-1.36)+1.00002612
ELSE
 OTR=1D0
END IF
SETSEO=OTR*SECSEO
```


## OASDI taxable wages of workers with both wages and self-employment earnings

```
AWSCMB=WSCCMB/CMBNT
AWSCMB96=AWSCMB(1996)
AWSCMB=AWSCMB*BASECW/AWSCMB96
CW=TAXMAX/AWSCMB
IF(CW.LT.0.0543009)THEN
 CWTR=CW-(.722659/1.65)*CW**1.65-(.461913/1.8)*CW**1.8
ELSE IF(CW.LT.0.1086018)THEN
 CWTR=-(1.02884/1.6)*CW**1.6+(.324761/2.6)*CW**2.6+1.02015*CW-.0000130669
ELSE IF(CW.LT.0.1629027)THEN
 CWTR=-(.906607/1.7)*CW**1.7+.947662*CW+.002059472
ELSE IF(CW.LT.0.2172037)THEN
 CWTR=-(.813951/1.55)*CW**1.55+.991722*CW+.002022215
ELSE IF(CW.LT.0.3258055)THEN
 CWTR=-(.755135/1.55)*CW**1.55+.964593*CW+.004355898
ELSE IF(CW.LT.0.5430091)THEN
 CWTR=-(.649755/1.6)*CW**1.6+.886467*CW+.011658928
ELSE IF(CW.LT.0.7059119)THEN
 CWTR=-(.573205/1.7)*CW**1.7+.810122*CW+.019653316
ELSE IF(CW.LT.0.9231155)THEN
 CWTR=-(5.22264/1.06)*CW**1.06+5.47514*CW-.053844798
ELSE IF(CW.LT.1.0860183)THEN
 CWTR=-(2.02619/1.15)*CW**1.15+2.27963*CW-.023407805
ELSE IF(CW.LT.1.5204256)THEN
 CWTR=-(.605192/.2)*DEXP(-.2*CW)+(.827158/.8)*DEXP(-.8*CW)-(1.52918/1.5)*DEXP(-1.5*CW)-.212269*CW+2.946985922
ELSE IF(CW.LT.1.8462311)THEN
 CWTR=-(.191389/.6)*DEXP(-.6*CW)-(.764408/1.8)*DEXP(-1.8*CW)+.0194903*CW+.719848486
```

```
ELSE IF(CW.LT.2.3077888)THEN
 CWTR=-(.12964/.5)*DEXP(-.5*CW)-(.644861/1.5)*DEXP(-1.5*CW)+.0183343*CW+.731280763
ELSE IF(CW.LT.2.9865502)THEN
 CWTR=-(.361318/.8)*DEXP(-.8*CW)+.0219491*CW+. }69895485
ELSE IF(CW.LT.4.3440731)THEN
 CWTR=-(.193202/.45)*DEXP(-.45*CW)+.00425171*CW+.82237055
ELSE IF(CW.LT.5.4300913)THEN
 CWTR=-(.0560412/.25)*DEXP(-.25*CW)-(.311286/.8)*DEXP(-.8*CW)+.00297316*CW+.854848493
ELSE IF(CW.LT.13.5752283)THEN
 CWTR=-(.0995677/.32)*DEXP(-.32*CW)+.00355234*CW+.843717127
ELSE IF(CW.LT.21.7203653)THEN
 CWTR=-(.041159/.19)*DEXP(-.19*CW)+.00156765*CW+.883046178
ELSE IF(CW.LT.678.7614168)THEN
 CWTR=-(.265022/.555)*CW**(-.555)+1.000103517
ELSE
 CWTR=1D0
END IF
WSTCMB=CWTR*WSCCMB
OASDI taxable earnings of workers with both wages and self-employment earnings
TECCMB=SECCMB+WSCCMB
ATECMB=TECCMB/CMBNT
ATECMB96=ATECMB(1996)
ATECMB=ATECMB*BASECT/ATECMB96
CT=TAXMAX/ATECMB
IF(CT.LT.0.0209065)THEN CTTR=CT-(58.6063/3.5)*CT**3.5
ELSE IF(CT.LT.0.1254391)THEN
CTTR \(=(.320825 / 1.4)^{*} \mathrm{CT}^{* *} 1.4-(1.90732 / 2) * \mathrm{CT}^{* *} 2+.967979 * \mathrm{CT}+.000050526-.00000622\)
ELSE IF(CT.LT.0.3345042)THEN
CTTR \(=-(1.77251 / 1.9)^{*} \mathrm{CT}^{* *} 1.9+(1.18333 / 2.8) * \mathrm{CT}^{* *} 2.8+1.11299 *\) CT-.003813108-.00000622
ELSE IF(CT.LT.0.7108215)THEN
CTTR \(=-(.246427 / 1.35) * \mathrm{CT}^{* *} 1.35-(1.24155 / 1.8) * \mathrm{CT}^{* *} 1.8+(.55025 / 2.3) * \mathrm{CT}^{* *} 2.3+1.16953 * \mathrm{CT}-.001078375-.00000622\)
ELSE IF(CT.LT.0.7944476)THEN
CTTR \(=(3.15997 / 1.4) * \mathrm{CT}^{* *} 1.4-(4.21829 / 1 \mathrm{D} 0) * \mathrm{DEXP}(-1 * \mathrm{CT})-4.46998 * \mathrm{CT}+4.300993015-.00000622\)
ELSE IF(CT.LT.1.0453257)THEN
CTTR \(=(.55343 / 1.6)^{*} \mathrm{CT}^{* *} 1.6-(1.76791 / 1.2) * \operatorname{DEXP}(-1.2 * \mathrm{CT})-.845578 * \mathrm{CT}+1.479639989-.00000622\)
ELSE IF(CT.LT.1.8815863)THEN
CTTR \(=-(.360108 / .3) * \operatorname{DEXP}(-.3 * \mathrm{CT})-(1.24485 / 2.7) * \operatorname{DEXP}(-2.7 * \mathrm{CT})-.110244 * \mathrm{CT}+1.566702582-.00000622\)
ELSE IF(CT.LT.3.7631726)THEN
CTTR=-(.262138/.6)*DEXP(-.6*CT)+(.208323/1.9)*DEXP(-1.9*CT)-(2.27562/2.7)*DEXP(-2.7*CT)+.00933849*CT + .799685739-.00000622
ELSE IF(CT.LT.4.1813029)THEN
CTTR=-(.26942/.6)*DEXP(-.6*CT)+(.266252/1.7)*DEXP(-1.7*CT)+.00905196*CT+.80182568-.00000622
ELSE IF(CT.LT.10.4532574)THEN
CTTR \(=-(.0592625 / .25) * \operatorname{EXP}(-.25 * \mathrm{CT})-(.541514 / 1) * \operatorname{DEXP}(-1 * \mathrm{CT})+.00174723 * \mathrm{CT}+.88757547-.00000622\)
ELSE IF(CT.LT.18.8158632)THEN
CTTR \(=-(.0610012 / .25) * \operatorname{DEXP}(-.25 * \mathrm{CT})+.00174344 * \mathrm{CT}+.888109189-.00000622\)
ELSE IF(CT.LT.522.6628676)THEN
CTTR \(=-(.21993 / .5455) *\) CT \(^{* *}(-.5455)+1.000030393-.00000622\)
ELSE
CTTR=1D0
END IF
TETCMB=CTTR*TECCMB
SETCMB=TETCMB-WSTCMB
```


## Ratio OASDI taxable to covered self-employment earnings

| RSET | $=($ SETCMB+SETSEO $) / C S E$ |
| :--- | :--- |
| Where | $=$ Average self-employment earnings of workers with no OASDI taxable wages in 1996 |
| ASEO96 | $=$ Average OASDI covered earnings of workers with both OASDI covered wages and self-employment earnings |
| ATECMB | $=$Average OASDI covered earnings of workers with both OASDI covered wages and self-employment earnings in <br> ATECMB96 <br> 1996 |


| AWSCMB | Average OASDI covered wage of workers with both wages and self-employment earnings |
| :---: | :---: |
| AWSCMB96 | Average OASDI covered wage of workers with both wages and self-employment earnings in 1996 |
| ASESEO | Average self-employment earnings of workers with no OASDI taxable wages |
| AWSCMB | Average OASDI covered wage of workers with both wages and self-employment earnings |
| BASECT | Average total earnings of workers with both self-employment earnings and wages in $1 \%$ sample data for 1996 used to produce equations |
| BASECW | $=\quad$ Average OASDI covered wages of workers with both self-employment earnings and wages in $1 \%$ sample data for 1996 used to produce equations |
| BASEO | Average self-employment earnings of workers with no OASDI taxable wages in $1 \%$ sample data for 1996 used to produce equations |
| CMBNT | Number or workers with both OASDI taxable wages and self-employment earnings |
| CSE | OASDI covered self-employment earnings |
| CT | Ratio OASDI taxable maximum to average earnings of workers with both self-employment earnings and OASDI taxable wages |
| CW | $=$ Ratio OASDI taxable maximum to average self-employment earnings of workers with both self-employment earnings and OASDI taxable wages |
| CTTR | Ratio of OASDI taxable to covered earnings for workers with both wages and self-employment earnings |
| CWTR | Ratio of OASDI taxable to covered wages for workers with both wages and self-employment earnings |
| O | Ratio OASDI taxable maximum to average self-employment earnings of workers with no OASDI taxable wages |
| OTR | Ratio of OASDI taxable self-employment to covered earnings for workers with no OASDI taxable wages |
| SECCMB | OASDI covered self-employment earnings of workers with both self-employment earnings and OASDI taxable wages |
| SECSEO | OASDI covered self-employment earnings of workers with no OASDI taxable wages |
| SEO | Number or workers with OASDI covered self-employment earnings and no OASDI taxable wages |
| SETCMB | OASDI taxable self-employment earnings of workers with both OASDI taxable wages and self-employment earnings |
| SETSEO | OASDI taxable self-employment earnings of workers with no OASDI taxable wages |
| TAXMAX | OASDI taxable maximum |
| TECCMB | OASDI covered earnings of workers with both wages and self-employed earnings |
| TETCMB | OASDI taxable earnings of workers with both wages and self-employed earnings |
| WSCCMB | $=$ OASDI covered wages of workers with both wages and self-employed earnings |
| WSTCMB | $=$ OASDI taxable wages of workers with both wages and self-employed earnings |

## 2-4.7 OASDI taxable self-employment earnings (SET)

SET $=$ SETR $*$ CSE
Where

| CSE | $=$ OASDI covered self-employment earnings |
| :--- | :--- |
| SET | $=$ OASDI taxable self-employment earnings |
| SETR | $=$ Ratio of OASDI taxable to covered self-employment earnings |

## 2-4.8 OASDI effective taxable payroll (ETP)

ETP=WTER+SET-0.5*MER

Where
ETP $=$ OASDI effective taxable payroll
MER $=$ OASDI multi-employer refund wages
SET = OASDI taxable self-employment earnings
WTER = Annual OASDI taxable employer wages

## 2-4.9 OASDI taxable wage liability (WTL)

$\mathrm{WTL}=\mathrm{WTER} * \mathrm{TRW}$
Where
TRW $=$ OASDI combined employee-employer tax rate
WTL = Annual OASDI taxable wage liabilities
WTER $=$ Annual OASDI taxable employer wages

## 2-4.10 OASDI taxable self-employment liability (SEL)

$$
\text { SEL }=\text { SET } * \text { TRSE }
$$

Where
SEL $=$ OASDI taxable self-employment earnings liabilities

```
SET = OASDI taxable self-employment earnings
TRSE = OASDI self-employment tax rate
```


## 2-4.11 OASDI quarterly taxable wage liability (WTLQ)

## Federal Civilian

## Annual total wages (OASDI + MQGE)

BAFCW $=34198.84$
AWCFC $=$ WCFC $/$ ECFC $*$ BAFCW $/$ AWCFCTOT97
T=MAX/AWCFC

IF(T.LT.0.014620379)THEN
FCTR=T-(1.04262/1.73)*T**1.73
ELSE IF(T.LT.0.292407578)THEN
FCTR $=-(1.22471 / 1.6) * \mathrm{~T}^{* *} 1.6+(.826746 / 1.8) * \operatorname{DEXP}(-1.8 * \mathrm{~T})+1.8535 * \mathrm{~T}-.459368449$
ELSE IF(T.LT.0.760259704)THEN
FCTR=-(.635082/2D0)*T**2+(.604884/2.9)*T**2.9-(.403213/4.6)*T**4.6+.910343*T+.002291358
ELSE IF(T.LT.1.228111829)THEN
FCTR=-(.162181/1.7)*T**1.7+(.143632/2.7)*T**2.7-(.312012/3.4)*T**3.4+.841165*T+. 011332647
ELSE IF(T.LT.1.520519407)THEN
FCTR $=-(1.34084 / 3.5) * \mathrm{~T}^{* *} 3.5+(1.09868 / 5 \mathrm{D} 0) * \mathrm{~T}^{* * 5-(.404253 / 5.8) * \mathrm{~T}^{*} * 5.8+1.17397 * \mathrm{~T}-.222555715}$
ELSE IF(T.LT.2.339260627)THEN
FCTR $=(.671304 / .5) * \operatorname{DEXP}(-.5 * \mathrm{~T})-(3.27076 / 1.4) * \operatorname{DEXP}(-1.4 * \mathrm{~T})+.126626 * \mathrm{~T}+.353367869$
ELSE IF(T.LT.3.50889094)THEN
FCTR $=(.0571643 / .95) * \operatorname{DEXP}(-.95 * \mathrm{~T})-(3.17633 / 1.8) * \operatorname{DEXP}(-1.8 * \mathrm{~T})+.000623031 * \mathrm{~T}+.996284293$
ELSE IF(T.LT.4.970928832)THEN
FCTR=-(12.3148/2.25)*DEXP(-2.25*T)+.0000698013*T+. 999222265
ELSE
FCTR=-(.0285502/2D0)*T**(-2D0)+1.00007094
END IF
WTFCTOT=FCTR*WCFC

Where

| AWCFC | $=$ Average covered Federal Civilian wages (OASDI plus MQGE) |
| :--- | :--- |
| AWCFCTOT97 | $=$ Average covered Federal Civilian wages (OASDI plus MQGE) for 1997 |
| BAFCW | $=$ Average Federal Civilian wages (OASDI plus MQGE) in 1\% sample data for 1997 used to produce equations |
| ECFC | $=$ Covered Federal Civilian employment (OASDI plus MQGE) |
| FCTR | $=$ Ratio of taxable to covered Federal Civilian wages (OASDI plus MQGE) |
| MAX | $=$ OASDI taxable maximum |
| T | $=$ Ratio of the OASDI taxable maximum to average covered Federal Civilian wages (OASDI plus MQGE) |
| WCFC | $=$ Taxable Federal Civilian wages (OASDI plus MQGE) |
| WTFCTOT |  |

## Annual MQGE wages

BAFCW $=50147.72$
AWCFC = WCFC / ECFC * BAFCW / AWCFCHO97
T = MAX / AWCFC
IF(T.LT.0.019941085)THEN
FCTR=T-(0.0450661/1.47)*T**1.47
ELSE IF(T.LT.0.099705424)THEN
FCTR=-(.0518044/1.9)*T**1.9-(.0368056/2.3)*T**2.3+.99479*T+. 0000248091
ELSE IF(T.LT.0.358939528)THEN
FCTR $=-(.05907 / 1.25) * \mathrm{~T}^{* *} 1.25-(.0746657 / 2.9) * \mathrm{~T} * * 2.9+1.02092 * \mathrm{~T}-.00032173$
ELSE IF(T.LT.0.558350377)THEN
FCTR $=-(2.4664 / 1.4) * \mathrm{~T}^{* *} 1.4+(4.82919 / 2.3) * \mathrm{~T}^{*} * 2.3-(3.97473 / 3) * \mathrm{~T}^{* * 3+1.83998 * \mathrm{~T}-.026694932}$
LSE IF(T.LT.0.797643395)THEN
FCTR $=(.609091 / 2.1)^{*} \mathrm{~T}^{*} * 2.1-(1.16086 / 4) * \mathrm{~T}^{* *} 4+.788373 * \mathrm{~T}+.043208139$
ELSE IF(T.LT.1.196465093)THEN
FCTR $=(2.35647 / .4) * \operatorname{DEXP}(-.4 * \mathrm{~T})-(3.87811 / 1.2) * \operatorname{DEXP}(-1.2 * \mathrm{~T})-(1.1179 / 2.5) * \operatorname{DEXP}(-2.5 * \mathrm{~T})+.738296 * \mathrm{~T}-2.83402534$
ELSE IF(T.LT.1.694992215)THEN
FCTR=-(.422884/1.3)*DEXP(-1.3*T)-(6.90241/3D0)*DEXP(-3*T)-.0229917*T+1.068147457

```
ELSE IF(T.LT.2.592341034)THEN
 FCTR=(.557032/1.2)*DEXP(-1.2*T)-(5.40739/2.2)*DEXP(-2.2*T)+.0102014*T+.960037325
ELSE
 FCTR=-(32.3187/3.5)*DEXP(-3.5*T)+1.000030482
END IF
WTFCHO=FCTR*WCFC
```

Where

| AWCFC | $=$ Average covered Federal Civilian MQGE wages |
| :--- | :--- |
| AWCFCHO97 | $=$ Average covered Federal Civilian MQGE wages for 1997 |
| BAFCW | $=$ Average Federal Civilian MQGE wages in 1\% sample data for 1997 used to produce equations |
| ECFC | $=$ Covered Federal Civilian MQGE employment |
| FCTR | $=$ Ratio of taxable to covered Federal Civilian MQGE wages |
| MAX | $=$ OASDI taxable maximum |
| T | $=$ Covered Federal Civilian MQGE wages |
| WCFC | $=$ Taxable Federal Civilian MQGE wages |
| WTFCHO |  |

Annual OASDI taxable wages

```
WTFC = WTFCTOT - WTFCHO
```

Where
WTFC $=$ Annual OASDI taxable Federal Civilian wages
WTFCHO $=$ Taxable Federal Civilian MQGE wages
WTFCTOT $=$ Taxable Federal Civilian wages (OASDI plus MQGE)

## Quarterly OASDI covered wages

```
CFCQD(1) = .98357 * TCFCD(I,1) + FCPD(I,1)
CFCQD(2) = .98909 * TCFCD(I,2) + FCPD(I,2)
CFCQD(3) = 1.01833 * TCFCD(I,3) + FCPD(I,3)
CFCQD(4) = 1.00814 * TCFCD(I,4) + FCPD(I,4)
QWCFCOD(J) = CFCQD(J) * WTFC
```

Where
CFCQD $\quad=\quad$ Proportion of annual OASDI covered Federal Civilian wages paid in each quarter
FCPD $\quad=\quad$ Payday variable for Federal Civilian wages based on calendar
I $=$ Calendar year
$\mathrm{J} \quad=\quad$ Quarter
TCFCD $\quad=\quad$ Proportion of annual NIPA Federal Civilian wages paid in each quarter
QWCFCOD $=$ Quarterly OASDI covered Federal Civilian wages
WTFC $=$ Annual OASDI taxable Federal Civilian wages

## Quarterly OASDI taxable wages

IF(FCTR.LE.0.928)FCQD(2)=CFCQD(2)+.27522*(1.-FCTR)-.15127*(1.-FCTR)**2+.35146*(1.-FCTR)**3
IF(FCTR.LE.0.993)THEN
FCQD (3) $=\mathrm{CFCQD}(3)+.28047 *(1 .-\mathrm{FCTR})-4.73021 *(1 .-\mathrm{FCTR})^{* *} 2+25.3606 *(1 .-\mathrm{FCTR}) * * 3-58.1741 *(1 .-\mathrm{FCTR})^{* *} 4+45.1465 *(1 .-\mathrm{FCTR}) * * 5$
$\operatorname{FCQD}(4)=\mathrm{CFCQD}(4)-.75095 *(1 .-\mathrm{FCTR})+3.65109 *(1 .-\mathrm{FCTR})^{* *} 2-16.9355^{*}(1 .-\mathrm{FCTR})^{* *} 3+23.9578 *(1 .-\mathrm{FCTR}) * * 4$
END IF
First quarter is always 100 percent taxable.
QWTFC(I,1)=QWCFC(I,1)
IF(FCTR.LE.0.928)THEN
Compute taxable for 2nd-4th quarter.
$\mathrm{FCQ}=\mathrm{FCQD}(2)+\mathrm{FCQD}(3)+\mathrm{FCQD}(4)$
WTFC2=WTFC-QWTFC $(1,1)$
FCQD(2:4)=FCQD(2:4)/FCQ
QWTFC(I,2:4)=FCQD(2:4)*WTFC2
ELSE IF(FCTR.LE.0.993)THEN
Second quarter covered is completely taxable.
QWTFC(I,2)=QWCFC(I,2)
QWTFC(I,3)=FCQD(3)*WTFC

ELSE
Second and third quarter covered is completely taxable.
QWTFC(I,2)=QWCFC(I,2)
QWTFC(I,3)=QWCFC(I,3)
QWTFC(I,4)=WTFC-QWTFC(I,1)-QWTFC(I,2)-QWTFC(I,3)
END IF
Where

| CFCQD | $=$ Proportion of annual OASDI covered Federal Civilian wages paid in each quarter |
| :--- | :--- |
| FCQ | $=$ Sum of proportions of annual OASDI covered Federal Civilian wages paid in each quarter for quarters two to four |
| FCQD | $=$ Proportion of annual OASDI taxable Federal Civilian wages paid in each quarter |
| FCTR | $=$ Ratio annual OASDI taxable to covered Federal Civilian wages |
| I | $=$ Palendar year |
| TCFCD | $=$ Quarterly of annual NIPA Federal Civilian wages paid in each quarter |
| QWCFC | $=$ Quarterly OASDI taxable Federal Civilian wages Civilian wages |
| QWTFC | $=$ Annual OASDI taxable Federal Civilian wages |
| WTFC | $=$ Total OASDI taxable Federal Civilian wages paid in quarters two to four |
| WTFC2 |  |

## Quarterly OASDI taxable wage liabilities

| WTLQFCEE(I, J) | $=$ QWTFC(I, J) * TRWEE(I) |
| :--- | :--- |
| WTLQFCER(I, J) | $=$ QWTFC(I, J) * TRWER(I) |
| WTLQFC(I, J) | $=$ WTLQFCEE(I, J) + WTLQFCER(I, J) |
| Where |  |
| I | $=$ Calendar year |
| J | $=$ Quarter |
| TRWEE | $=$ OASDI employee tax rate |
| TRWER | $=$ OASDI employer tax rate |
| WTLQFC | $=$ Quarterly OASDI taxable Federal Civilian combined employee-employer wage liabilities |
| WTLQFCEE | $=$ Quarterly OASDI taxable Federal Civilian employee wage liabilities |
| WTLQFCER | $=$ Quarterly OASDI taxable Federal Civilian employer wage liabilities |

Military wages

## Annual OASDI taxable wages

```
BACMW = 16439.95
ACMW = AWCML * BACMW / AWCML97
T = MAX / ACMW
IF(T.LT.0.060827432)THEN
 MTR=T-(.712875/2)*T**2
ELSE IF(T.LT.0.182482295)THEN
 MTR=(.71197/1.8)*T**1.8-(1.59752/2D0)*T**2+.97587*T+0.000542413
ELSE IF(T.LT.0.608274315)THEN
 MTR=-(1.75026/2D0)*T**2+(2.86837/3D0)*T**3-(1.90346/4D0)*T**4+1.10056*T-.006441373
ELSE IF(T.LT.1.094893767)THEN
 MTR=-(.700864/1.4)*T**1.4-(.40042/3.3)*T**3.3+(.197091/4.1)*T**4.1+1.33615*T-.056637087
ELSE IF(T.LT.1.703168082)THEN
 MTR=(21.3527/.3)*DEXP(-.3*T)-(21.1277/0.5)*DEXP(-.5*T)+(2.73027/1.1)*DEXP(-1.1*T)+4.34833*T-31.56802874
ELSE IF(T.LT.2.311442397)THEN
 MTR=-(33.3894/1.2)*T**1.2+(14.9436/1.6)*T**1.6-(2.58041/2.1)*T**2.1+21.3365*T-.872981629
ELSE IF(T.LT.3.163026438)THEN
 MTR=-(.076094/.3)*DEXP(-.3*T)-(1.59668/1.4)*DEXP(-1.4*T)-.0271355*T+1.182946986
ELSE IF(T.LT.4.257920205)THEN
 MTR=(.482918/1.5)*T**1.5-(9.21141/.9)*DEXP(-.9*T)+(25.93/1.5)*DEXP(-1.5*T)-1.14706*T+3.246003821
ELSE
 MTR=-(9.00723/1.8)*DEXP(-1.8*T)+1.000285789
END IF
WTML=MTR*WCML
```

Where
ACMW $=$ Average OASDI covered military wages adjusted for level used to produce equations

| AWCML | $=$ Average OASDI covered military wages |
| :--- | :--- |
| AWCML97 | $=$ Average OASDI covered military wages in 1997 |
| BACMW | $=$ Average OASDI covered military wages in $1 \%$ sample data for 1997 used to produce equations |
| MAX | $=$ OASDI taxable maximum |
| MTR | $=$ Ratio of OASDI taxable to covered military wages |
| T | $=$ Ratio of the OASDI taxable maximum to average covered military wages |
| WCML | $=$ Annual OASDI covered military wages |
| WTML | $=$ Annual OASDI taxable military wages |

## Quarterly OASDI covered wages

| CMLQD(1) | $=$ | .97978*TCMLD(I,1)*MLPD(I,1) |
| :---: | :---: | :---: |
| CMLQD(2) | = | 1.002*TCMLD (I,2)*MLPD ( 1,2 ) |
| CMLQD(3) | = | 1.02145*TCMLD $(\mathrm{I}, 3) * \operatorname{MLPD}(\mathrm{I}, 3)$ |
| CMLQD(4) | = | .99689*TCMLD(1,4)*MLPD (I,4) |
| QWCML | = | CMLQD(J)*WCML |
| Where |  |  |
| CMLQD | = | Proportion of annual OASDI covered military wages paid in each quarter |
| I | $=$ | Calendar year |
| J | = | Quarter |
| MLPD | = | Payday variable for military wages based on calendar |
| QWCML | = | Quarterly OASDI covered military wages |
| TCMLD | $=$ | Proportion of annual NIPA military wages paid in each quarter |
| WCML | = | Annual OASDI covered military wages |

## Quarterly OASDI taxable wages

T=MAX/AWCML
IF(MLTR.LT.0.776)QML(1)=CMLQD(1)+.393565-.018307*T-3.44641/T+15.6381/T**2-40.0168/T**3+62.0449/T**4-
$57.525 / \mathrm{T}^{* * 5}+30.2498 / \mathrm{T}^{* *} 6-7.8664 / \mathrm{T}^{* *} 7+.674629 / \mathrm{T}^{* *} 8$
IF(MLTR.LT.0.952)QML(2)=CMLQD(2)+.844748-.0401062*T-7.24247/T+32.4957/T**2-83.3328/T**3+129.374/T**4-
$122.526 / \mathrm{T}^{* *} 5+68.2737 / \mathrm{T}^{* *} 6-20.1479 / \mathrm{T}^{* *} 7+2.34289 / \mathrm{T}^{* *} 8$
IF(MLTR.LT.0.985)QML(3)=CMLQD(3)-2.62266+.125592*T+22.5832/T-105.727/T**2+300.027/T**3-540.915/T**4+622.304/T**5-
$441.658 / \mathrm{T}^{* *} 6+175.722 / \mathrm{T}^{* *} 7-29.8987 / \mathrm{T}^{* *} 8$
IF(MLTR.LT.1.)QML(4)=CMLQD(4)+2.37295-.111565*T-21.1954/T+106.049/T**2-330.637/T**3+658.869/T**4-
835.626/T**5+648.641/T**6-279.392/T**7+50.9246/T**8

IF(MLTR.LT.0.776)THEN
QWTML(I,1:4)=QML(1:4)*WTML
ELSE IF(MLTR.LT.0.952)THEN
QWTML(I,1)=QWCML(I,1)
TOTWG1=WTML-QWTML(I,1)
Q1=QML(2)+QML(3)+QML(4)
QML(2:4)=QML(2:4)/Q1
QWTML(I,2:4)=QML(2:4)*TOTWG1
ELSE IF(MLTR.LT.0.985)THEN
QWTML(I,1)=QWCML(I,1)
QWTML(I,2)=QWCML(I,2)
TOTWG1=WTML-QWTML(I,1)-QWTML(I,2)
Q1=QML(3)+QML(4)
QML(2:4)=QML(2:4)/Q1
QWTML(I,2:4)=QML(2:4)*TOTWG1
ELSE IF(MLTR.LT.1.)THEN
QWTML(I,1)=QWCML(I,1)
QWTML(I,2)=QWCML(I,2)
QWTML(I,3)=QWCML(I,3)
QWTML(I,4)=WTML-QWTML(I,1)-QWTML(I,2)-QWTML(I,3)
END IF
Where

| AWCML | $=$ Average OASDI covered military wages |
| :--- | :--- |
| CMLQD | $=$ Proportion of annual OASDI covered military wages paid in each quarter |
| MLTR | $=$ Ratio of OASDI taxable to covered military wages |
| MAX | $=$ OASDI taxable maximum |
| I | $=$ Calendar year |
| Q1 | $=$ Sum of proportions of annual OASDI taxable military wages paid in each quarter for last three or two quarters in year |


| QML | $=$ Proportion of annual OASDI taxable military wages paid in each quarter |
| :--- | :--- |
| QWCML | $=$ Quarterly OASDI covered military wages |
| QWTML | $=$ Quarterly OASDI taxable military wages |
| T | $=$ Ratio of the OASDI taxable maximum to average covered military wages |
| TOTWG1 | $=$ Annual OASDI taxable military wages for all quarters except first or first and second |
| WTML | $=$ Annual OASDI taxable military wages |

Quarterly OASDI taxable wage liabilities

| WTLQMLEE(I, J) | $=$ | QWTML(I, J) * TRWEE(I) |
| :--- | :--- | :--- |
| WTLQMLER(I, J) | $=$ | QWTML(I, J) * TRWER(I) |
| WTLQML(I, J) | $=$ | WTLQMLEE(I, J) + WTLQMLER(I, J) |
| Where |  |  |
| I | $=$ Calendar year |  |
| J | $=$ Quarter |  |
| TRWEE | $=$ OASDI employee tax rate |  |
| TRWER | $=$ Quarterly OASDI taxable military combined employee-employer wage liabilities |  |
| WTLQML | $=$ Quarterly OASDI taxable military employee wage liabilities |  |
| WTLQMLEE | $=$ Quarterly OASDI taxable military employer wage liabilities |  |

## Federal

| WCF | $=$ | $\mathrm{WCFC}+\mathrm{WCML}$ |
| :--- | :--- | :--- |
| QWCF | $=$ | $\mathrm{QWCFC}+\mathrm{QWCML}$ |
| WTF | $=$ | $\mathrm{WTFC}+\mathrm{WTML}$ |
| QWTF | $=$ | $\mathrm{QWTFC}+\mathrm{QWTML}$ |
| WTLQFEE $(\mathrm{I}, \mathrm{J})$ | $=$ | $\mathrm{QWTF}(\mathrm{I}, \mathrm{J}) *$ TRWEE(I) |
| WTLQFER(I,J) | $=$ | QWTF(I,J) $*$ TRWER(I) |
| WTLQF(I,J) | $=$ | WTLQFEE $(\mathrm{I}, \mathrm{J})+$ WTLQFER $(\mathrm{I}, \mathrm{J})$ |

Where

| I | $=$ Calendar year |
| :--- | :--- |
| J | $=$ Quarter |
| QWCF | $=$ Quarterly OASDI covered Federal wages |
| QWCF C | $=$ Quarterly OASDI covered Federal Civilian wages |
| QWCML | $=$ Quarterly OASDI covered military wages |
| QWTF | $=$ Quarterly OASDI taxable Federal wages Federal Civilian wages |
| QWTFC | $=$ Quarterly OASDI taxable military wages |
| QWTML | $=$ Annual OASDI covered Federal wages |
| WCF | $=$ Annual OASDI covered Federal Civilian wages |
| WCFC | $=$ Annual OASDI taxable Federal wages |
| WCML | $=$ Quarterly OASDI taxable Federal combined employee-employer wage liabilities |
| WTF | $=$ Quarterly OASDI taxable Federal employee wage liabilities |
| WTFC | $=$ Annual OASDI taxable military wages |
| WTLQF |  |

## State and Local wages

## Annual OASDI taxable wages

BACW $=21583.61$
AWCSL = WCSL / ESLC * BACW / AWCSLOD97
S = MAX / ASLC
IF(S.LT.0.02316573)THEN
SLTR=S-(1.1803/1.71)*S**1.71
ELSE IF(S.LT.0.463314609)THEN
SLTR $=-(1.54738 / 1.6) * S^{* *} 1.6-(.421147 / 2.5) *$ S**2.5+(3.34881/.5)*DEXP $(-.5 * S)+4.39012 * S-6.697774474$
ELSE IF(S.LT.0.833966296)THEN
SLTR $=-(.756943 / 1.8) * \mathrm{~S}^{* *} 1.8+(.485982 / 2.3) * \mathrm{~S}^{* *} 2.3-(.175681 / 3.2) * \mathrm{~S} * 3.2+.88749 * \mathrm{~S}+.004652169$
ELSE IF(S.LT.1.945921357)THEN
SLTR $=(3.4167 / .3) * \operatorname{DEXP}(-.3 * \mathrm{~S})-(7.26467 / .9) * \operatorname{DEXP}(-.9 * \mathrm{~S})+(4.57049 / 1.5) * \operatorname{DEXP}(-1.5 * \mathrm{~S})+1.0378 * \mathrm{~S}-6.245057503$

ELSE IF(S.LT.3.243202261)THEN
SLTR=-(2.40293/.2)*DEXP(-.2*S)+(6.44952/.4)*DEXP(-.4*S)-(5.64852/.6)*DEXP(-.6*S)-.278204*S+5.099074279
ELSE IF(S.LT.5.559775305)THEN
SLTR=-(.0434955/.6)*DEXP(-.6*S)-(4.00403/1.7)*DEXP(-1.7*S)+.00006219*S+. 997065459
ELSE IF(S.LT.18.53258435)THEN
SLTR=-(.0272758/.5)*DEXP(-.5*S)+.0000671826*S+. 997657785
ELSE
SLTR $=-(.00861948 / .7) *$ S**(-.7)+1.000492941
END IF
WTSL=SLTR*WCSL
Where

| AWCSL | $=$ Average OASDI covered State and Local wages adjusted for average wage used to produce equations |
| :--- | :--- |
| AWCSLOD97 | $=$ Average OASDI covered State and Local wages for 1997 |
| BACW | $=$ Average OASDI covered State and Local wages in $1 \%$ sample data for 1997 used to produce equations |
| ESLC | $=$ OASDI covered State and Local employment |
| MAX | $=$ OASDI taxable maximum |
| S | $=$ Ratio of the OASDI taxable maximum to average covered State and Local wages |
| SLTR | $=$ OASDI covered State and Local wages |
| WCSL | $=$ OASDI taxable State and Local wages |
| WTSL |  |

Quarterly OASDI covered wages
$\operatorname{CSLQD}(1)=1.0131455 * \operatorname{TCSLD}(\mathrm{I}, 1)+\operatorname{SLPD}(\mathrm{I}, 1)$
$\operatorname{CSLQD}(2)=1.0431906 * \operatorname{TCSLD}(\mathrm{I}, 2)+\operatorname{SLPD}(\mathrm{I}, 2)$
CSLQD(3)=.9060524*TCSLD(I,3)+SLPD(I,3)
$\operatorname{CSLQD}(4)=1.0365866 * \operatorname{TCSLD}(\mathrm{I}, 4)+\operatorname{SLPD}(\mathrm{I}, 4)$
QWCSL=CSLQD(1:4)*WCSL
Where

| CSLQD | $=$ Proportion of annual OASDI covered State and Local wages paid in each quarter |
| :--- | :--- |
| I | $=$ Calendar year |
| QWCSL | $=$ Quarterly OASDI covered State and Local wages |
| SLPD | $=$ Payday variable for State and Local wages based on calendar |
| TCSLD | $=$ Proportion of annual NIPA State and Local wages paid in each quarter |
| WCSL | $=$ Annual OASDI covered State and Local wages |

## Quarterly OASDI taxable wages

```
QSL(1)=(CSLQD(1)-.24087*(1.-1./SLTR))
QSL(2)=(CSLQD(2)-1.0492*(1.-1./SLTR)+.51259*(1.-1./SLTR**2)-.07643*(1.-1./SLTR**3))
QSL(3)=(CSLQD(3)-5.99032*(1.-SLTR**2)+13.238*(1.-SLTR**3)-11.3291*(1.-SLTR**4)+3.52237*(1.-SLTR**5))
QSL(4)=(CSLQD(4)+8.99897*(1.-SLTR**.25)-5.48866*(1.-SLTR**.5))
TQSL=QSL(2)+QSL(3)+QSL(4)
QSL(2:4)= QSL(2:4)/TQSL
QWTSL(I,1)=QSL(1)*WTSL
QWTSL(I,2:4)=QSL(2:4)*(WTSL- QWTSL(I,1))
```

Where
CSLQD = Proportion of annual OASDI covered State and Local wages paid in each quarter
I $=$ Calendar year

QSL $=$ Proportion of annual OASDI taxable State and Local wages paid in each quarter
QWTSL = Quarterly OASDI taxable State and Local wages
SLTR $=$ Ratio of OASDI taxable to covered State and Local wages
WTSL $=$ OASDI taxable State and Local wages

## Quarterly OASDI taxable wage liabilities

WTLQSL(I,J) $=\operatorname{QWTSL}(\mathrm{I}, \mathrm{J}) * \operatorname{TRW}(\mathrm{I})$
Where

| I | $=$ Calendar year |
| :--- | :--- |
| J | $=$ Quarter |
| TRW | $=$ OASDI combined employee-employer tax rate |
| WTLQSL | $=$ Quarterly OASDI taxable State and Local combined employee-employer wage liabilities |

## Private household quarterly OASDI taxable wages and liabilities

QWTPHH(I,J) = WCPHH(I) * QDPHH(J)
WTLQPHH(I,J) = QWTPHH(I,J) * TRW(I)

| Where | $=$ Calendar year |
| :--- | :--- |
| I | $=$ Quarter |
| J | $=$ Proportion of annual OASDI taxable private household wages paid in each quarter |
| QDPHH | $=$ Quarterly OASDI taxable private household wages |
| QWTPHH | $=$ OASDI combined employee-employer tax rate |
| TRW | $=$ Annual OASDI covered private household wages |
| WCPHH | $=$ Quarterly OASDI taxable private household combined employee-employer wage liabilities |
| WTLQPHH |  |

## Farm taxable wages

## Annual OASDI

BAFMW $=7467.91$
AWCFM97 = ACFMW(1997)
$\mathrm{F}=\mathrm{MAX} /$ (ACFMW $*$ BAFMW / AWCFM97)
IF(F.LT.0.066953142)THEN
FMTR=F- (1.30211/1.75)*F**1.75
ELSE IF(F.LT.0.401718855)THEN
FMTR=-(1.18244/1.35)*F**1.35+(.25412/1.75)*F**1.75+1.24681*F-. 001598087
ELSE IF(F.LT.0.669531425)THEN
FMTR=-(.508764/.6)*DEXP(-.6*F)-(.300083/2.8)*DEXP(-2.8*F)+.0188542*F+. 966550312
ELSE IF(F.LT.1.87468799)THEN
FMTR=-(.638146/.6)*DEXP(-.6*F)-(.0322774/1.5)*DEXP(-1.5*F)-.033706*F+1.133974442
ELSE IF(F.LT.2.41031313)THEN
FMTR $=-(2.64644 / 1.1) *$ DEXP $(-1.1 * \mathrm{~F})+(17.4638 / 2) * \mathrm{DEXP}(-2 * \mathrm{~F})-(26.4191 / 2.5) * \mathrm{DEXP}(-2.5 * \mathrm{~F})+.00686748 * \mathrm{~F}+.909154345$
ELSE IF(F.LT.4.82062626)THEN
FMTR $=-(1.06567 / 1.3) * \mathrm{~F}^{* *} 1.3+(.073837 / 2.1) * \mathrm{~F}^{* *} 2.1+1.31021 * \mathrm{~F}-.007628879$
ELSE IF(F.LT.6.427501679)THEN
FMTR $=-(.178355 / .5) *$ DEXP(-.5*F)-(1.70356/1.3)*DEXP(-1.3*F)+.00115171*F+. 959096096
ELSE IF(F.LT.10.7125028)THEN
FMTR $=-(.0474377 / 0.35) * \operatorname{DEXP}(-.35 * \mathrm{~F})-(1.32456 / 1) * \operatorname{DEXP}(-1 * \mathrm{~F})+.0016146 * \mathrm{~F}+.957903052$
ELSE IF(F.LT.11.38203422)THEN
FMTR $=-(.0581938 / .35) * \operatorname{DEXP}(-.35 * \mathrm{~F})+.00130453 * \mathrm{~F}+.961918378$
ELSE IF(F.LT.24.1031313)THEN
FMTR $=-(.0492564 / .3) * \operatorname{DEXP}(-.3 * \mathrm{~F})+.000761577 * \mathrm{~F}+.97040299$
ELSE
FMTR $=-(.00304904 / .06) * \operatorname{DEXP}(-.06 * \mathrm{~F})+1.000606299$
END IF
TFMW=FMTR*WCFM
Where

| ACFMW | $=$ Annual average OASDI covered farm wages |
| :--- | :--- |
| AWCFM97 | $=$ Annual average OASDI covered farm wages for 1997 |
| BAFMW | $=$ Average farm wage in 1\% sample data for 1997 used to produce equations |
| F | $=$Ratio of taxable maximum to annual average OASDI covered farm wages adjusted for average wage used in <br> equations |
| FMTR | $=$ Ratio of OASDI taxable to covered farm wages |
| MAX | $=$ OASDI taxable maximum |
| TFMW | $=$ Annual OASDI taxable farm wages |

Quarterly OASDI wages and liabilities
$\operatorname{QWTFM}(\mathrm{I}, \mathrm{J})=\operatorname{TTFMD}(\mathrm{I}, \mathrm{J}) * \operatorname{TFMW}$
$\operatorname{WTLQFM}(\mathrm{I}, \mathrm{J})=\operatorname{QWTFM}(\mathrm{I}, \mathrm{J}) * \operatorname{TRW}(\mathrm{I})$
Where

```
= Calendar year
= Quarter
```

| QWTFM | $=$ Quarterly OASDI taxable farm wages |
| :--- | :--- |
| TFMW | $=$ Annual OASDI taxable farm wages |
| TRW | $=$ OASDI com |
| TTFMD | $=$ Proportion of annual OASDI taxable farm wages paid in each quarter |
| WTLQFM | $=$ Quarterly OASDI taxable farm combined employee-employer wage liabilities |

## Quarterly OASDI taxable employee tips

QWTTIPSEE(I,J) = QDTIP(J) * WTTIPSEE(I)

| QWTTIPSEE(I,2) = QWTTIPSEE(I,2) + WTTIPSSR(I) |  |
| :--- | :--- |
| WTLQTIPSEE(I,J) = QWTTIPSEE(I,J) * TRW(I) |  |
|  |  |
| Where |  |
| I | $=$ Calendar year |
| J | $=$ Quarter |
| QDTIP | $=$ Proportion of annual OASDI taxable tips received in each quarter |
| QWTTIPSEE | $=$ Quarterly OASDI taxable tips received by employees |
| WTLQTIPSEE | $=$ Quarterly OASDI combined employee-employer wage liabilities on taxable tips received by employees |
| TRW | $=$ OASDI combined employee-employer tax rate |
| WTTIPSEE | $=$ Annual OASDI taxable tips received by employees reported by employers |
| WTTIPSSR | $=$ Annual OASDI taxable tips received by employees self-reported on income tax returns |

## Private non-farm OASDI taxable wages and liabilities

## Annual

WTPNF $=\mathrm{WTER}-\mathrm{WTFC}-\mathrm{WTML}-\mathrm{WTSL}-$ TFMW $-\mathrm{WTTIPSEE}-\mathrm{WTTIPSSR}$
Where
TFMW $=$ Annual OASDI taxable farm wages
WTSL $=$ Annual OASDI taxable State and Local wages
WTFC $=$ Annual OASDI taxable Federal Civilian wages
WTPNF $=$ Annual OASDI taxable private non-farm wages excluding tips
WTTIPSEE = Annual OASDI taxable tips received by employees reported by employers
WTTIPSSR = Annual OASDI taxable tips received by employees self-reported on income tax returns
WTER $=$ Annual OASDI taxable employer wages

## Quarterly

BACW93 $=21912.00$
NACW = BACW93 / ACW93 * AWC
X = MAX / NACW
IF(X.LT.0.91274)THEN
TWTR=1D0+. $990751 * \operatorname{DEXP}(\mathrm{X})^{* *}(-1) /(-1)-.013904602$
ELSE IF(X.LT.2.05367)THEN
TWTR=1D0+(-.003129*X+(1.167562*DEXP(X)**(-1.17)/(-1.17)))-. 065747345
ELSE IF(X.LT.4.791895)THEN
TWTR=1D0+(.003962*X+(.770093*X**(-1.85053))/(-1.85053))-. 06071106
ELSE
TWTR=1D0+(.267708*X**(-.94))/(-.94)+. 00066
END IF
IF(TWTR.LT.0.70)THEN
QP(1)=-(-0.000575+0.18692*DLOG(TWTR)-0.23133*DLOG(TWTR)**2-
$0.10453 * \operatorname{DLOG}(T W T R) * * 3+0.04306 * D L O G(T W T R) * * 4+0.01906 * D L O G(T W T R) * * 5)-0.0325201+\mathrm{PD}(1)+\mathrm{TCPD}(\mathrm{I}, 1)$
$\mathrm{QP}(2)=-\left(0.00657+1.7015 * \mathrm{TWTR}^{2}-8.60615^{*} \mathrm{TWTR}^{* *} 2+14.444 * \mathrm{TWTR}^{* *} 3-9.97171 * \mathrm{TWTR}^{* *} 4+2.42519^{*} \mathrm{TWTR}^{* * 5}\right)-$
$0.0080956+\mathrm{PD}(2)+\mathrm{TCPD}(\mathrm{I}, 2)$
$\mathrm{QP}(3)=-\left(0.12167+1.31142 * \mathrm{TWTR}^{* *} 3-6.31672 * \mathrm{TWTR}^{* *} 4+8.03785 * \mathrm{TWTR}^{* * 5-3.15412 * T W T R * * 6)+0.019325+\mathrm{PD}(3)+\mathrm{TCPD}(\mathrm{I}, 3) ~}\right.$
QP(4)=-(0.1548-0.41354*TWTR**5+0.25874*TWTR**7)+0.0197767+PD(4)+TCPD(I,4)
ELSE IF(TWTR.LT.0.88)THEN
$\mathrm{QP}(1)=0.224763-0.237056 * \mathrm{TWTR}+\mathrm{PD}(1)+\mathrm{TCPD}(\mathrm{I}, 1)$
$\mathrm{QP}(2)=0.190385-0.209676 * T W T R+0.00176 *(\mathrm{TWTR}-0.7) /(0.88-0.7)+\mathrm{PD}(2)+\mathrm{TCPD}(\mathrm{I}, 2)$
$\mathrm{QP}(3)=-0.052523+0.05309 * \mathrm{TWTR}+\mathrm{PD}(3)+\mathrm{TCPD}(\mathrm{I}, 3)$
$\mathrm{QP}(4)=-0.354571+0.38249 * \mathrm{TWTR}+\mathrm{PD}(4)+\mathrm{TCPD}(\mathrm{I}, 4)$
ELSE
$\mathrm{QP}(1)=0.968092-1.877574 * \mathrm{TWTR}+0.904348 * \mathrm{TWTR}^{* *} 2+\mathrm{PD}(1)+\mathrm{TCPD}(\mathrm{I}, 1)$
QP(2) $=-0.468266+1.148107 * T W T R-0.690132 *$ TWTR $^{*} * 2+\mathrm{PD}(2)+\mathrm{TCPD}(\mathrm{I}, 2)$

```
 QP(3)=-0.850885+1.824094*TWTR-0.981557*TWTR**2+PD(3)+TCPD(I,3)
 QP(4)=0.350767-1.093966*TWTR+0.766972*TWTR**2+PD(4)+TCPD(I,4)
END IF
IF(PTR.LT.0.86)THEN
 QP(J)=QP(J)+ADJTP(J)
ELSE
 IF((ADJCP(J)-ADJTP(J)).NE.0D0)QP(J)=QP(J)+ADJTP(J)+((PTR-BPTR)/(1.-BPTR))**4*(ADJCP(J)-ADJTP(J))
END IF
QWTPNF(I, J) = QP(J) * WTPNF(I) + QWTTIPSEE(I, J) + QWTPHH(I, J)
QWTPNF(I, 2) = QWTPNF(I, 2) + WTTIPSSR(I)
```

Where

| ACW93 | $=$ Annual average OASDI covered wage for 1993 |
| :--- | :--- |
| AWC | $=$ Annual average OASDI covered wage for current year |
| BACW93 | $=$ Annual average OASDI covered wage for 1993 from actual data used to determine taxable to covered wage equations |
| I | $=$ Calendar year |
| J | $=$ Quarter |
| MAX | $=$ Annual OASDI taxable maximum |
| NACW | $=$ equations |
|  | $=$ Payday variable for private non-farm based on calendar |
| PD | $=$ Quarterly OASDI taxable private non-farm wages including tips |
| QP | $=$ Proportion of annual NIPA private wages paid in each quarter |
| QWTPNF | $=$ Ratio of OASDI taxable to covered wages computed using equations based on data for 1993 |
| TCPD | $=$ Ratio of annual OASDI taxable maximum to adjusted annual average OASDI covered wage (NACW) |
| TWTR |  |

Quarterly OASDI wage liabilities
WTLQPNF $(\mathrm{I}, \mathrm{J})=(\mathrm{QWTPNF}(\mathrm{I}, \mathrm{J})-\mathrm{QWTPHH}(\mathrm{I}, \mathrm{J})) * \operatorname{TRW}(\mathrm{I})$
Where
QWTPHH $=$ Quarterly OASDI taxable private household wages
QWTPNF $\quad=\quad$ Quarterly OASDI taxable private non-farm wages including tips
TRW $=$ OASDI combined employee-employer tax rate
WTLQPNF $=$ Quarterly OASDI tax liabilities from taxable private non-farm wages including tips, excluding private household
taxable wages

## Total quarterly OASDI taxable wages and wage liabilities



## 2-4.12 OASDI quarterly taxable wage liability collections (WTLQC)

OASDI taxable private non-farm wages by sub-quarterly periods

```
PTR =WTP/WCP
MR =MAR(I)-.04346*(1.-PTR)+.08497*(1.-PTR)**2
JR =JUN(I)-.02627*(1.-PTR)-.26844*(1.-PTR)**2
SR =SEP(I)-.12321*(1.-PTR)-.02344*(1.-PTR)**2
DR =DEC(I)-.12468*(1.-PTR)-.20710*(1.-PTR)**2
MWTP(1)=QWTP(I,1)*MR
MWTP(2)=QWTP(I,1)-MWTP(1)
MWTP(3)=QWTP(I,2)*JR
```



OASDI taxable private non-farm wages collected on in same quarter wages are paid
TRAT $\quad=$ RATEE(I,5)
CA $\quad=.95$
MWCP(1)=QWSCPNF(I,1)*MAR(I)
MWCP(2)=QWSCPNF(I,1)-MWCP(1)
MWCP(3)=QWSCPNF(I,2)*JUN(I)
MWCP(4)=QWSCPNF(I,2)-MWCP(3)
MWCP(5)=QWSCPNF(I,3)*SEP(I)
MWCP(6)=QWSCPNF(I,3)-MWCP(5)
MWCP(7)=QWSCPNF(I,4)*DEC(I)
MWCP(8)=QWSCPNF(I,4)-MWCP(7)
RCSM $=.80$
QRMREQ $=750$.
QRWREQ=11250.
RMF=70786.*WSP(I)/1001400.
CALL ITERNU(QRMREQ,MWTP(2),MWCP(2),TRAT,RMF,PWCS(1))
CALL ITERNU(QRWREQ,MWTP(1),MWCP(1),TRAT,RMF,PWCE(1))
CALL ITERNU(QRMREQ,MWTP(4),MWCP(4),TRAT,RMF,PWCS(2))
CALL ITERNU(QRWREQ,MWTP(3),MWCP(3),TRAT,RMF,PWCE(2))
CALL ITERNU(QRMREQ,MWTP(6),MWCP(6),TRAT,RMF,PWCS(3))
CALL ITERNU(QRWREQ,MWTP(5),MWCP(5),TRAT,RMF,PWCE(3))
CALL ITERNU(QRMREQ,MWTP(8),MWCP(8),TRAT,RMF,PWCS(4))
CALL ITERNU(QRWREQ,MWTP(7),MWCP(7),TRAT,RMF,PWCE(4))
DO J=1,4
QWTPC(I,J)=PWCS(J)+PWCE(J)*RCSM*CA
QWTPF(I,J)=QWSTXPHH(I,J)-QWTPC(I,J)
END DO

Where

| AWSCODXSRT | $=$ Annual average OASDI covered private non-farm wages (excluding household) |
| :--- | :--- |
| CA | $=$ Compliance allowance |
| DEC | $=$ Proportion of fourth quarter OASDI covered private non-farm wages (excluding tips and household) paid in |
| I | $=$ Calendar year |
| J | $=$ Quarter |
| JUN | $=$ Proportion of second quarter OASDI covered private non-farm wages (excluding tips and household) paid in |
|  |  |
| MAR | June |
|  |  |
| MWCP | $=$ March |
| MWTP | $=$ OASDI covered private non-farm wages paid in third month and in first two months of each quarter |
| PWCE | $=$ OASDI taxable private non-farm wages paid in the third month of each quarter |


| PWCS |  | OASDI taxable private non-farm wages paid in the first two months of each quarter on which taxes are collected in that quarter |
| :---: | :---: | :---: |
| QWSCPNF | $=$ | Quarterly OASDI covered private non-farm wages |
| QRMREQ | = | Monthly deposit requirement |
| QRWREQ | = | Quarterly deposit requirement |
| QWSTXPHH | = | Quarterly OASDI taxable private non-farm wages (excluding household) |
| QWTPC | $=$ | Quarterly OASDI taxable private non-farm wages on which employers deposit taxes in the quarter the wages were paid |
| QWTPF | $=$ | Quarterly OASDI taxable private non-farm wages on which employers deposit taxes in the quarter after the wages were paid |
| RATEE(I,5) | = | OASDHI employee tax rate |
| RCSM | $=$ | Proportion of OASDI taxable private non-farm wages wages paid in same quarter in which taxes are collected |
| RMF | $=$ | Current year average wage size of firm |
| SEP | $=$ | Proportion of third quarter OASDI covered private non-farm wages (excluding tips and household) paid in September |
| TRAT | $=$ | OASDHI employee tax rate |
| WSP | $=$ | Economy-wide (NIPA) private wages |
| SUBROUTINE ITERNU(A11,QPAR,QTOT,T,RMF,AMTOUT) |  |  |
| R=QPAR/QTOT |  |  |
| $\mathrm{X}=\mathrm{A} 11 /(\mathrm{T} * 2 .+.10)$ |  |  |
| DO |  |  |
| IWH $=$ X ${ }^{( }(.16011+.01998 *$ LOG(X/RMF)-.01) |  |  |
| FWH=T*2.*X*((-1.4402*LOG(1.+X/RMF)+1.)*(1.-R)+R) |  |  |
| A1 $=\mathrm{IWH}+\mathrm{FWH}$ |  |  |
| D=A11/A1 |  |  |
| N1=D*1000. |  |  |
| IF(N1.EQ.999.OR.N1.EQ.1000)THEN |  |  |
| RTAX $=$ R + (1.-R)*(-1.07115*X/RMF+.38633*(X/RMF)**2+1) |  |  |
| $\begin{gathered} \text { TOD }=177.16+1142.7 * \mathrm{DEXP}(-(\mathrm{X} / \mathrm{RMF}))+1181.26 * \mathrm{DEXP}(-3 . *(\mathrm{X} / \mathrm{RMF}))-907.88^{* D E X P}(-4 . *(\mathrm{X} / \mathrm{RMF}))+646.49 * \mathrm{DEXP}(-5 . *(\mathrm{X} / \mathrm{RMF}))- \\ 165.09 * \mathrm{DEXP}(-6 . *(\mathrm{X} / \mathrm{RMF}))-20.92 * \mathrm{X} / \mathrm{RMF}-2906.07 /(\mathrm{X} / \mathrm{RMF}+1 .)^{* * 2+831.44 /(\mathrm{X} / \mathrm{RMF}+1 .)}{ }^{* * 3} \end{gathered}$ |  |  |
| AMTOUT=QPAR-RTAX*TOD*QTOT |  |  |
| RETURN |  |  |
| END IF |  |  |
| $\mathrm{X}=\mathrm{X} * \mathrm{D}$ |  |  |
| END DO |  |  |
| END SUBROUTINE | RNU |  |

Where

| A1 | $=$ Total (income plus FICA) taxes withheld |
| :--- | :--- |
| A11 | $=$ Deposit requirement |
| AMTOUT | $=$ OASDI taxable private non-farm wages paid in sub-quarterly period and collected on in same quarter |
| D | $=$ Ratio of deposit requirement to total taxes withheld |
| FWH | $=$ FICA taxes withheld |
| IWH | $=$ Rncome taxes withheld |
| N1 | $=$ OASDI taxable private non-farm wages paid in sub-quarterly period |
| QPAR | $=$ OASDI covered private non-farm wages paid in sub-quarterly period |
| QTOT | $=$ Initial ratio of OASDI taxable to covered private non-farm wages paid in sub-quarterly period |
| R | $=$ Current year average wage size of firm |
| RMF | $=$ OAtio of OASDI taxable to covered private non-farm wages paid in sub-quarterly period |
| RTAX | $=$ Proportion of liabilities to be deposited in quarter after that in which wages paid |
| T | $=$ Taxable wage amount needed to meet deposit requirement |
| TOD |  |

OASDI taxable private wages collected on in same quarter wages paid and in following quarter
QWTPCQ $(1, \mathrm{~J})=\mathrm{QWTPC}(\mathrm{I}, \mathrm{J})+\mathrm{QWTPHHCQ}(\mathrm{I}, \mathrm{J})+\mathrm{QWTFM}(\mathrm{I}, \mathrm{J})$
QWTPFQ(I,J)=QWTPF(I,J)+QWTPHHFQ(I,J)
OASDI taxable State and Local wages collected on in same quarter wages paid and in following quarter

```
SLTR=WTSL/WCSL
LMPW(1)=MARSL(I)-.00329*(1.-SLTR**2)
LMPW(2)=JUNSL(I)-.68187*(1.-SLTR**3)+.52206*(1-SLTR**4)
LMPW(3)=SEPSL(I)-1.33596*(1.-SLTR)+1.51187*(1.-SLTR**2)-.63523*(1.-SLTR**3)
```

```
LMPW(4)=DECSL(I)-2.03892*(1.-SLTR)+1.90430*(1.-SLTR**2)-.6633*(1.-SLTR**3)
DO J=1,4
 SLCR(J)=(1.-LMPW(J))+LMPW(J)*LMCRPR(I-16,J)
 QWTSLC(I,J)=SLCR(J)*QWTSL(I,J)
 QWTSLF(I,J)=QWTSL(I,J)-QWTSLC(I,J)
END DO
```

Where

| DECSL | $=$ Proportion of OASDI taxable State and Local wages paid in fourth quarter which are paid in December |
| :--- | :--- |
| I | $=$ Calendar year |
| J | $=$ Quarter |
| JUNSL | $=$ Proportion of OASDI taxable State and Local wages paid in second quarter which are paid in June |
| LMCRPR | $=$ Proportion of OASDI taxable State and Local wages paid in final month of quarter on which employers are to deposit |
| LMPW | $=$ Paxes in the same quarter |
| MARSL | $=$ Proportion of quarterly OASDI taxable State and Local wages paid in final month of quarter |
| QWTSL | $=$ Quarterly OASDI taxabable State and and Local wages paid ing first quarter which are paid in March |
| QWTSLC | $=$ Quarterly OASDI taxable State and Local wages paid in quarter |
| QWTSLF on which taxes are deposited by the employer in the |  |
|  | $=$ Quare quarter |
| SEPSL | $=$ following quarter taxable State and Local wages paid in quarter on which taxes are deposited by the employer in the |
| SLCR | $=$ Proportion of OASDI taxable State and Local wages paid in third quarter which are paid in September |
|  |  |
| SLTR | $=$ the same quarter |
| WCSL taxable State and Local wages paid in quarter on which taxes are deposited by the employer in |  |
| WTSL | $=$ Annual OASDI taxable to covered State and Local wages |
|  | $=$ Annual OASDI taxable State and Local wages |

OASDI taxable wages collected on in same quarter wages paid and in following quarter
WTQCQ(I,J)= QWTPCQ(I,J)+ QWTSLC(I,J)+QWTF $(1, J)$

| WTQFQ $(1, J)=$ QWTPFQ(I,J)+ QWTSLF(I,J) |  |
| :--- | :--- |
| Where | $=$ |
| I | $=$ Calendar year |
| J | $=$ Quarter |
| QWTF | $=$ Quarterly OASDI taxable Federal wages |
| QWTPCQ | $=$ Quarterly OASDI taxable private wages collected on in same quarter wages paid |
| QWTPFQ | $=$ Quarterly OASDI taxable private wages collected on quarter following that in which wages paid |
| QWTSLCQ | $=$ Quarterly OASDI taxable State and Local wages collected on in same quarter wages paid |
| QWTSLFQ | $=$ Quarterly OASDI taxable State and Local wages collected on in quarter following that in which wages paid |
| WTQCQ | $=$ Quarterly OASDI taxable wages collected on in same quarter wages paid |
| WTQFQ | $=$ Quarterly OASDI taxable wages collected on in quarter following that in which wages paid |

## Quarterly OASDI wage tax collections

```
WTLQC(I,1) = TRW(I-1) * WTQFQ(I-1,4) + TRW(I) * WTQCQ(I,J)
DO J = 2, 4
 WTLQC(I,J) = TRW(I) * (WTQFQ(I,J-1) + WTQCQ(I,J))
END DO
```

Where
I $\quad=$ Calendar year
$\mathrm{J}=$ Quarter
TRW = OASDI combined employee-employer tax rate
WTLQC = Quarterly OASDI wage tax collections
WTQCQ $=$ Quarterly OASDI taxable wages collected on in same quarter wages paid
$\mathrm{WTQFQ}=$ Quarterly OASDI taxable wages collected on in quarter following that in which wages paid

## 2-4.13 Quarterly Self-Employed Net Income Tax Collections (SELQC)

DO $\mathrm{J}=1,4$
SELQC(I,J) $=\operatorname{SECRCY}(\mathrm{I}, \mathrm{J}) * \operatorname{SEL}(\mathrm{I})+\operatorname{SECRPY}(\mathrm{I}, \mathrm{J}) * \operatorname{SEL}(\mathrm{I}-1)$
END DO
Where

```
I = Calendar year
J = Quarter
SECRCY = Proportion of OASDI taxable self-employment earnings collected on in same year earned
SECRPY = Proportion of OASDI taxable self-employment earnings collected on in year following that in which earned
SEL = OASDI taxable self-employment earnings liabilities
SELQC = Quarterly OASDI self-employed net income tax collections
```


## 2-4.14 SECA Appropriation Adjustments (MSECAAA)

```
MSECAAA = 0
DO L = I-2, I-9, -1
 MSECAAA = MSECAAA + SEAACO(I,J) * SELIAC(L)
END DO
```

Where
I $=$ Calendar year
J $=$ Quarter
L $=$ Liability year
MSECAAA $=$ OASDI SECA appropriation adjustment for quarter (assigned to last month in quarter)
SEAACO $=$ Proportion of past year's OASDI self-employment tax liability which will be reported in current quarter
SELIAC $\quad=\quad$ Prior years' OASDI self-employment tax liability

## Appendix 2-2

## Economic Acronyms

| AA | Appropriation adjustments |
| :--- | :--- |
| ACE | Average OASDI covered earnings |
| ACSE | Average OASDI covered self-employed income |
| ACW | Average OASDI covered wage |
| ACWC | Average economy-wide wage |
| ADJ_FSA_FC | Adjustment to lower federal civilian covered wages relative to NIPA |
|  | wages due to a presumed increase in the relative amount placed into an |
|  | FSA |
| AWEFC_N | Average wage for Federal civilian employees not covered under OASDI |
| AWI | Average wage index calculated by SSA; based on the average wage of all |
|  | workers with wages from Forms W-2 |
| AWSE | Economy-wide average wage |
| AWSGEFC | Average wage for the Federal government enterprises |
| AWSGFC | Average wage for the Federal civilian government |
| AWSGFM | Average wage for the military |
| AWSGGEFC | Average wage for the Federal government \& government enterprises |
| AWSGGESL | Average wage for State and local government and government enterprises |
| AWSP | Average wages, private sector |
| AWSPH | Average wage in private household sector |
| AWSPL | Average wages, private sector, 2-year moving average |
| AWSSP | Average compensation, private sector |
| AWSSPBNFXGE | Average compensation, private nonfarm business, excluding government |
|  | enterprises |
| AWSSPES | Average compensation, private sector, educational services |
| AWSSPF | Average compensation, private farm, wage workers |
| AWSSPHS | Average compensation, private sector, health services |
| AWSSPL | Lagged average compensation for private sector workers |
| AWSSPSS | Average compensation, private sector, social services |
| AWSUI | Average wage of workers under UI |
| AYF | Average proprietor income, private farm |
| AYF_K | Ratio of average self-employment income to average wage-worker |
| AYNF | compensation for the agriculture sector |
| AYNF_K | Average proprietor income, private nonfarm business |
| BEA | Ratio of average self-employment income to average wage-worker |
| BLS | compensation for the nonagriculture sector |
| CFCGEFC | The Bureau of Economic Analysis |
| CFCGESL | The Bureau of Labor Statistics |
|  | Compensation of fixed capital, Federal government enterprises |
| CFCGFC | Government consumption of fixed capital, Government enterprises, State |
|  | \& local |
| Compensation of fixed capital, Federal civilian |  |


| CFCGFM | Federal Government Consumption Expenditures, Defense Consumption Expenditures |
| :---: | :---: |
| CFCGSL | State \& Local Government consumption expenditures, Gross output of general government, Value added, consumption of general government fixed capital |
| CMB_TOT | Workers that have a combination of both OASDI covered wages and selfemployed income. |
| CML | Ratio of Federal military OASDI covered wages to NIPA wages |
| COV | Economic Sub-Process: Covered Employment and Earnings |
| CP | Ratio of Private OASDI Covered to NIPA wages; OASDI private coverage ratio |
| CPI | The Consumer Price Index for Urban Wage Earners and Clerical Workers (CPI-W) is an official measure of inflation in consumer prices, published by the BLS. |
| CPS | Current Population Survey, conducted monthly by the Bureau of Census for the Bureau of Labor Statistics. It is the source of historical monthly economic data (such as labor force, civilian noninstitutional population, and unemployment) used to project US employment. |
| CR_UI |  |
| CRAZ1 | Civilian pay raise |
| CSE_TOT | Total OASDI covered self-employed income |
| CSLA | Ratio of State and Local OASDI Covered to NIPA wages |
| CSRS | Civil Service Retirement System |
| CSW | Self-employed only workers (SEO) plus combination workers (CMB_TOT) |
| DNEDMIL | Decreases in the military population (as shown by the difference over four quarters) |
| DRTP, DRTPP, | Dummy variables for positive and negative |
| DRTPN, DRTP1Q, | business cycle trends |
| DNRTP1Q, |  |
| DPRTP1Q |  |
| E | Total employment, CPS concept (i.e., average of monthly estimates of total wage and salary workers, plus self employed, plus unpaid family workers) |
| E_FE | Civilian employment level at full employment (i.e., at potential GDP) |
| EA | Total agricultural employment |
| EAS | Civilian Employment Level, Self employed workers: agriculture, SA |
| EAW | Employment by class of worker, agricultural wage workers |
| EDMIL | Total number serving in the US Armed Forces estimated by the Department of Defense and published by the Census Bureau |
| EGFC | Federal civilian government employment |


| EGEFCPS | Employment, Establishment Data, All Employees: Government, Federal |
| :--- | :--- |
|  | Government Enterprises, U.S. Postal Service |
| EGGEFC | Employment, Establishment Data, All Employees: Government, Federal |
|  | Government, SA |
| EGGESL | Employment, State \& Local government enterprises |
| EMPTRDI | DI employer tax rate |
| EMPTRHI | HI employer tax rate |
| EMPTROASI | OASI employer tax rate |
| ENA | Civilian Employment Level, Nonagricultural industries, 16 years and over, |
|  | SA |
| ENAS | Employment by class of worker, nonagricultural self-employed |
| ENAU | Employment by class of worker, nonagricultural unpaid family workers |
| ENAW | Employment by class of worker, nonagricultural wage workers |
| ENAWPBXGE | Employment for private nonfarm business |
| ENAWPH | Employment by class of worker, nonagricultural wage workers, private |
|  | household workers |
| ENAWSPBXGE | Employment for private nonfarm business and nonagricultural self- |
|  | employed |
|  |  |
| EO | Total employment in the other immigrant population |
| EO_ESF | Total employment in the other immigrant population whose reported |
|  | earnings are posted to the Earnings Suspense File |
| EO_MEF | Total employment in the other immigrant population whose earnings are |
|  | reported and posted to the Master Earnings File |
| EO_MEFC | Total employment in the other immigrant population whose earnings are |
| EO_UND | reported and posted to the Master Earnings File and are OASDI-covered |
|  | Total employment in the other immigrant population that is strictly in the |
| EP | underground economy (i.e., with no earnings reported) |
| EPES_EST | Employees in Private industries |
| EPHS_EST | Employees by industry, Private industries, Educational services |
| EPSS_EST | Employment for private health services |
| ESS | Employees by industry, Private industries, Social Assistance |
| ETP | Self-employed workers |


| GDPGEFC | GDP, Federal civilian government enterprises |
| :---: | :---: |
| GDPGESL | GDP, State \& local government enterprises |
| GDPGF | GDP, General Government, Federal |
| GDPGFC | GDP, Federal civilian |
| GDPGFM | GDP, military |
| GDPGGE | GDP, Federal and State \& local government enterprises |
| GDPGGEFC | GDP, Federal civilian government and government enterprises |
| GDPGGESL | GDP, State \& local government and government enterprises |
| GDPGSL | GDP, General Government, State \& Local |
| GDPPBNFXGE | GDP, private nonfarm business, excluding government enterprises |
| GDPPF | GDP, private business sector, farm |
| GDPPH | GDP, Private Households |
| GDPPNI | GDP, Nonprofit institutions serving households |
| HI | Hospital insurance |
| HIFC_L | HI Employer Liability, Federal Civilian |
| HIFM_L | HI Employer Liability, Federal Military |
| HIP_L | HI Employer Liability, Private |
| HISL_L | HI Employer Liability, State \& Local |
| KGDP05 | Potential real GDP, 2005\$ |
| LC | US labor force, equal to the sum of number of persons employed and number of persons seeking employment |
| LFPR | Labor force participation rate, defined as the ratio of the number of persons in the US labor force to the number of persons in the US noninstitutional population. |
| M | Military population |
| MER | Multi-employer refund wages |
| MRAZ | Military pay raise |
| N | Civilian noninstitutional population |
| NCE | Total noncovered employment |
| NIPA | The National Income and Product Accounts, published by the BEA, providing historical estimates of quarterly earnings and output measures |
| NRA | Normal retirement age |
| OASDI | Old-Age, Survivors, and Disability Insurance |
| OASDIFC_L | OASDI Employer Liability, Federal Civilian |
| OASDIFM_L | OASDI Employer Liability, Federal Military |
| OASDIP_L | OASDI Employer Liability, Private |
| OASDISL_L | OASDI Employer Liability, State \& Local |
| OASDHI | Old-Age, Survivors, Disability, and Health Insurance |
| OLI | Employer contributions for employee pension and insurance funds |
| OLI_CSRS1 | Contributions for CSRS employees' pay |
| OLI_FC | Other labor income, Federal civilian |
| OLI_FERS1 | Contributions for FERS employees' pay |


| OLI_FERSFC | Employer contributions to Thrift Savings Plan for FERS employees |
| :---: | :---: |
| OLI_GGE | Other labor income, government and government enterprises |
| OLI_GHI | Other labor income by type, Employer contributions to pension and welfare funds, private welfare funds, Group health insurance |
| OLI_GHI_FC | Employer contributions for employee pension \& insurance funds, group health insurance, Federal civilian government sector |
| OLI_GHI_P | Employer contributions for employee pension \& insurance funds, group health insurance, private sector |
| OLI_GHI_SL | Employer contributions for employee pension \& insurance funds, group health insurance, State \& local government sector |
| OLI_GLI | Employer contributions for employee pension and insurance funds, Group life insurance |
| OLI_GLI_FC | Employer contributions for employee pension \& insurance funds, group life insurance, Federal civilian government sector |
| OLI_GLI_P | Employer contributions for employee pension \& insurance funds, group life insurance, private sector |
| OLI_GLI_SL | Employer contributions for employee pension \& insurance funds, group life insurance, State \& local government sector |
| OLI_P | Employer contributions for employee pension and insurance funds, private industries |
| OLI_PPPS | Other Labor Income, Private Sector Pension and Profit Sharing |
| OLI_PPS | Employer contributions for employee pension and insurance funds, Pension \& profit-sharing |
| OLI_RETFC | Employer contributions for employee pension and insurance funds, Publicly administered government employee retirement plans, Federal civilian |
| OLI_RETFM | Employer contributions for employee pension and insurance funds, Publicly administered government employee retirement plans, Federal military |
| OLI_RETSL | Employer contributions for employee pension and insurance funds, Publicly administered government employee retirement plans, State and local |
| OLI_SL | Other labor income, State and local |
| OLI_SU | Employer contributions for employee pension and insurance funds, Supplemental unemployment |
| OLI_WC | Employer contributions for employee pension and insurance funds, Workers' compensation |
| OLI_WCP | Private employer contribution to other labor income, total for workers' compensation |
| OLI_WCSL | Employer contributions to workers' compensation, State and local |
| OLIF_RETFCO | Other government contributions to Federal civilian retirement |
| OOH | Owner-occupied housing |
| PGDP | Gross Domestic Product Price Index, Units: 2005=100 |
| PGDPAF | Deflator for farm output |

\(\left.$$
\begin{array}{ll}\text { PIA } & \begin{array}{l}\text { Primary insurance amount } \\
\text { PIA replacement rate, defined as the ratio of a hypothetical medium } \\
\text { scale worker's PIA to his/her career average indexed earnings. }\end{array}
$$ <br>

PIARR \& GDP price deflator\end{array}\right]\)| Private nonfarm business excluding government enterprises |
| :--- |
| PGDP |
| PBNFXGE |
| RCMB |


| RSOCSL_WC | Ratio of combined Private and State \& local sector employer <br> contributions to social insurance for workers' compensation to the <br> combined Private and State and local sector employer contributions to |
| :--- | :--- |
|  | workers' compensation <br> Ratio of total employment to the sum of wage \& salary, self-employed |
| RTE | workers, and the military (TE/(EW + ES + military)) |
| A summary measure of the business cycle equal to the ratio of real GDP |  |
| to potential GDP |  |


|  | unemployment insurance |
| :---: | :---: |
| SOC_WCP | Private employer contributions to social insurance, total for workers' compensation |
| SOC_WCSL | State and Local government employer contributions to social insurance, total for workers'compensation |
| SOCF_HI | Contributions for Government Social Insurance, Employer |
|  | Contributions, Federal Social Insurance Funds, Hospital Insurance |
| SOCF_MIFM | Contributions for Government Social Insurance, Employer |
|  | Contributions, Federal Social Insurance Funds, Military Medical Insurance |
| SOCF_OASDI | Contributions for Government Social Insurance, Employer |
|  | Contributions, Federal Social Insurance Funds, Old-age, Survivors, And Disability Insurance |
| SOCF_PBG | Contributions for Government Social Insurance, Employer |
|  | Contributions, Federal Social Insurance Funds, Pension Benefit |
|  | Guaranty |
| SOCF_RETRR | Contributions for Government Social Insurance, Employer |
|  | Contributions, Federal Social Insurance Funds, Railroad Retirement |
| SOCF_UIF | Contributions for Government Social Insurance, Employer |
|  | Contributions, Federal Social Insurance Funds, Federal Unemployment Tax |
| SOCF_UIFC | Total federal civilian government employer contributions to unemployment insurance |
| SOCF_UIFED | Contributions for Government Social Insurance, Employer |
|  | Contributions, Federal Social Insurance Funds, Federal Employees' |
|  | Unemployment Insurance |
| SOCF_UIFM | Total federal government employer contributions to unemployment insurance, military |
| SOCF_UIS | Contributions for Government Social Insurance, Employer |
|  | Contributions, Federal Social Insurance Funds, State Unemployment Insurance |
| SOCF_WC | Contributions for Government Social Insurance, Employer |
|  | Contributions, Federal Social Insurance Funds, Worker's Compensation |
| SOCSL_WC | Contributions for Government Social Insurance, Employer |
|  | Contributions, State and Local Social Insurance Funds, Workers' |
|  | Compensation |
| SSA | Social Security Administration |
| TAXMAX | OASDI contribution and benefit base |
| TAXPAY | Economic Sub-Process: Taxable Payroll |
| TCE | Total OASDI covered employment |
| TE | Total "at any time" employment |
| TEFC_N | Total "at any time" employment, Federal civilian, without Federal civilian OASDI |

TEO
TEO_ESF
TEO_MEF
TEO_MEFC

TEO_UND
TMAXUI_SL
TRATE_UI
TRATIO_UI
TRSE
TRW
TXRP
U
USEAR
USEMP
WEFC_N
WS
WSC
WSD
WSDP
WSGEFC
WSGFC
WSGFM
WSGGEFC
WSGGESL
WSP
WSPF
WSPH
WSPNI
WSPRRB

WSS
WSSG
WSSGE
WSSGEFC
WSSGESL

Total "at any time" employment in the other immigrant population Total "at any time" employment in the other immigrant population whose reported earnings are posted to the Earnings Suspense File Total "at any time" employment in the other immigrant population whose earnings are reported and posted to the Master Earnings File Total "at any time" employment in the other immigrant population whose earnings are reported and posted to the Master Earnings File and are OASDI-covered
Total "at any time" employment in the other immigrant population that is strictly in the underground economy (i.e., with no earnings reported)
Taxable maximum for State \& local unemployment insurance

OASDI self-employed tax rate
Combined OASDI employee-employer tax rate
OASDI private taxable ratio
The number of persons in the labor force who are unemployed
Economic Sub-Process: U.S. Earnings
Economic Sub-Process: U.S. Employment
Wages for Federal civilian employees not covered under OASDI
Compensation of Employees, Wage and Salary Accruals
Total OASDI covered wages
Total wage and salary disbursements
Private wage and salary disbursements
Government Wages and Salaries, Federal civilian, Government Enterprises
Wage and salary accruals by industry, Government, Federal civilian
Wage and salary accruals by industry, Government, Federal, Military
Wages for the Federal government \& government enterprises
Wages for State and local government and government enterprises Compensation of Employees, Wage and Salary Accruals
Wage and salary accruals by industry, Private industries, Farms
Wage and salary accruals by industry, Private industries, Households
Wage and salary accruals by industry, Private industries, Nonprofit
institutions serving households
Wages covered by Railroad Retirement Act
Total wage worker compensation
Compensation for Federal and State \& local government
Compensation for Federal and State \& local government enterprises
Compensation of employees by industry, Government, Federal
Compensation of employees by industry, Government, State and local government enterprises

| WSSGF | Federal Government Consumption Expenditures, Compensation of General Government Employees |
| :---: | :---: |
| WSSGFC | Compensation of employees by industry, Government, Federal civilian |
| WSSGFM | Compensation of employees by industry, Government, Military |
| WSSGGE | National Income w/o Capital Consumption Adjustment, Government |
| WSSGGESL | Compensation for the State \& local government and government enterprises |
| WSSGSL | State \& Local Government Consumption Expenditures, Compensation of General Government Employees |
| WSSP | Compensation of employees by industry, Private industries |
| WSSPBNFXGE | Compensation in private business nonfarm excluding government enterprises |
| WSSPES | Compensation of employees by industry, Private industries, Educational services |
| WSSPF | Compensation of employees by industry, Private industries, Farms |
| WSSPH | Compensation of employees by industry, Private industries, Households |
| WSSPHS | Compensation of employees by industry, Private industries, Health services |
| WSSPNI | Compensation of employees by industry, Private industries, Nonprofit institutions serving households |
| WSSPSS | Compensation of employees by industry, Private industries, Social assistance |
| WSSY | Total compensation for wage and salary workers and proprietors |
| WSW | Wage and salary workers that report some OASDI covered earnings |
| WTEE | Total employee OASDI taxable wages |
| WTER | Total employer OASDI taxable wages |
| WTL | Annual OASDI wage tax liabilities |
| WTLQ | Quarterly OASDI wage tax liabilities |
| WTLQC | Quarterly OASDI wage tax collections |
| Y | Total proprietor income |
| YF | National Income, Proprietors' income with Inventory Valuation (IVA) and Capital Consumption Adjustment (CCAdj): farm sector |
| YNF | National Income, Proprietors' income with IVA and CCAdj: nonfarm |

## Process 3:

Beneficiaries

## 3. Beneficiaries

OCACT uses the Beneficiaries process to project the fully insured and disability insured population, the number of disabled worker and their dependent beneficiaries, the number of retired worker and their dependent beneficiaries, and the number of dependent beneficiaries of deceased workers. The Beneficiaries process receives input data from the Demography and Economics sections along with data received from the Social Security Administration and other government agencies. Output data is provided to the Economics and Trust Fund Operations and Actuarial Status processes.

The Beneficiaries Process is composed of three subprocesses: INSURED, DISABILITY, and OLD-AGE AND SURVIVORS. As a rough overview, INSURED projects the number of people in the Social Security area population that have sufficient work histories for disability and retirement benefit eligibility. DISABILITY projects the number of disabled worker and their dependent beneficiaries. OLD-AGE AND SURVIVORS projects the number of retired workers, their dependent beneficiaries, and the dependent beneficiaries of deceased workers.

All programs output data on an annual basis.

### 3.1. INSURED

## 3.1.a. Overview

Insured status is a critical requirement for a worker, who has participated in the covered economy, to receive Social Security benefits upon retirement or disability. The requirement for insured status depends on the age of a worker and his (or her) accumulation of quarters of coverage (QC).

INSURED is a simulation model that estimates the percentage of the population that is fully insured (FPRO) and disability insured (DPRO) throughout the projection period. These estimates are used in conjunction with estimates of the Social Security area population to estimate the number of people that are fully insured (FINPOP) and disability insured (DINPOP). FINPOP is then used by the OLD-AGE AND SURVIVORS INSURANCE subprocess, and both FINPOP and DINPOP are used by the DISABILITY subprocess. FINPOP and DINPOP are projected by age, sex, and cohort.

For each sex and birth cohort, INSURED simulates 30,000 work histories which represent the Social Security area population (SSAPOP). These histories are constructed from past and projected cover worker rates, median earnings, and amounts required for crediting QC.

The equations for this subprocess are given below:

$$
\begin{align*}
& \text { FPRO }=\text { FPRO }(\cdot)  \tag{3.1.1}\\
& \text { DPRO }=\text { DPRO }(\cdot)  \tag{3.1.2}\\
& \text { FINPOP }=\text { FPRO } * \text { SSAPOP }  \tag{3.1.3}\\
& \text { DINPOP }=\text { DPRO } * \text { SSAPOP } \tag{3.1.4}
\end{align*}
$$

## 3.1.b. Input Data

All data are updated annually, except those that are noted.

## Long-Range OCACT Data

## Demography

- Social Security area population as end of year (1940 - 2090) by age (0-100, age 100 including age 100 and older), marital status (single, married, widowed, divorced) and
sex (M, F). (Workflow 3.a)
- "Other immigrant" population as end of year (2010 - 2090) by age (0 -100, age 100 including age 100 and older) and sex (M, F). (Workflow 3.c)
- Number of new "net legal immigrants" (legal immigrants - estimated legal emigrants) entering the Social Security area each year (1940 - 2090) by age (14-69) and sex (M, F). (Workflow 3.d)


## Economics

- Historical annual estimates of covered workers by sex (M, F) and age (15-74) for years (1937-2010). (Workflow 3.b)
- Annual projections (2011 - 2090) of covered workers that are based on the assumption that the portion of "other immigrants" in the Social Security Area stays constant at the level of the latest historical estimates by cohort and sex. The data format is the same as those in historical period. (Workflow 3.b)
- Annual projection (2008 - 2090) of average wage index and median covered earnings. (Workflow 3.f)
- "Other immigrant" workers with earnings posted to the Master Earnings File (MEF) by sex (M, F), age (16-95), and for years (2010 - 2090). (Workflow 3.g)
- Total "other immigrant" workers by sex (M, F), age (16 - 95), and for years (2010 2090). (Workflow 3.h)


## Beneficiaries

- Disabled-worker beneficiaries at year end (2010 - 2090) by age (15-66), sex (M, F) and duration ( $0-10$, duration 10 including duration 10 and above) from the previous year's Trustees Report. These data are read in from files that are generated annually from the Beneficiaries/DISABILITY (\#3.2) area. (Workflow 3.e)


## Short-Range OCACT data

- FINPOP by age (14 - 95, age 95 including age 95 and older) and sex (M, F) from the end of year 1969 to the end of Short-Range projection period (2021). (Workflow 2.f) (MKS-2012.3)
DINPOP by age ( $15-66$ ) and sex (M, F) from the end of year 1969 to the end of Short-Range projection period (2021). (Workflow 2.g) (MKS-2012.3)


## Other input data

- Historical series of annual median earnings of covered workers by age group (<20, $20-24,25-29,30-34,35-39,40-44,45-49,50-54,55-59,60-61,62-64,65-69)$ and sex
(M, F) for years 1937-2008. Data are updated using the data in the most recent Social Security Annual Statistical Supplement Table 4.B6. (Workflow 2.b) (MKS-2012.2)
- Number of disabled workers by age (20-69) and sex (M, F) for years 1958-2010. Ages 66-69 are zeros. Data are updated using the data from the historical disability file "wkrben". (Workflow 2.e) (MKS-2012.2)
- The amount required for crediting one quarter of coverage for years 1937-2008 from a OCACT web site. (Workflow 2.d) (MKS-2012.2)
- Historical series of annual median earnings of all covered workers for years 19372008. Data are updated using the data in the most recent Social Security Annual Statistical Supplement Table 4.B6. (Workflow 2.c) (MKS-2012.2)
- The number of all covered workers (wage/salary workers, self-employed workers) by sex and amount of earnings for 2008 in the most recent Social Security Annual Statistical Supplement Table 4.B7 \& 4.B9. These are used to produce the input data for the distribution of earnings (FRAC.f90). (Workflow 2.a) (MKS-2012.2)
- ANNUAL factor (comparability factor between quarterly and annual reporting of earnings) by age (13-69) and sex (M, F) for years prior to 1978. These data are not updated. (Workflow 4.d) (MKS-2012.1)
- SLCT factor (adjustment factor to bring simulated fully insured rate in line with historical fully insured rate) by age (13-69) and sex (M, F). These data are updated when needed. (Workflow 4.b) (MKS-2012.2) Updated for 2012 TR
- SRCH factor (adjustment factor to bring simulated fully insured rate in line with historical fully insured rate) by age (13-69) and sex (M, F). These data are updated when needed. (Workflow 4.c) (MKS-2012.2) Updated for 2012 TR
- DIADJ factor (adjustment factor to bring simulated disability insured rate in line with historical disability insured rate) by age (13-69) and sex (M, F). These data are updated when needed. (Workflow 4.e) (MKS-2012.2) Updated for 2012 TR


## 3.1.c. Development of Output

Equation 3.1.1 \& 3.1.2 -

## Determining the QC distribution

There are three variables playing important roles in the simulation process starting from age 13 through 69 of a birth cohort by sex. They include historical and projected covered worker rates, the amounts required for crediting QC, and a cumulative worker distribution by earnings level.

Covered worker rates by age and sex are defined as the ratio of covered workers to the Social Security area population. Historical and projected numbers of covered workers and the Social Security area population, which are provided by the Economics and Demography sections respectively, are used to calculate the rates for ages 15 through 69. For ages, 13 and 14,

INSURED estimates covered worker rates based on the covered worker rates at age 15.
The amount of earnings needed to earn one QC is specified by law for each year of the historical period. Its projection assumes the same growth rate as the Social Security average wage index.

The cumulative worker distribution by earnings level is called 'FRAC'. It is a function of covered earnings relative to median earnings. For a given ratio of covered earnings relative to median earnings, FRAC returns the percentage of covered workers whose earnings relative to median earnings are less than the given ratio. It is constructed based on the latest historical data. It is used for each age and sex and is assumed to remain constant throughout the projection period. The program uses FRAC to estimate the percentage of covered workers that earn $0,1,2$, 3 or 4 QC in a given year. Thus, for a particular age and sex, the percentage of covered workers earning at least $n$ QC is defined as:

$$
\text { QCDist }=1-\operatorname{FRAC}\left[\frac{n^{*} Q C \text { amount }}{\text { median earnings }}\right], \quad \text { for } n=1,2,3,4
$$

where median earnings is for that age and sex.

## Simulation process - assigning QC to records

Once the QCDist is known, the simulation process begins with 30,000 records for each sex and birth cohort. Starting with the QC distribution at age 13, INSURED randomly assigns a number of QC (1, 2, 3 or 4 ) to these records based on QCDist.

For ages 14 to 69, INSURED begins the simulation process by randomly selecting records to represent new net legal immigrants from the covered worker portion of 30,000 records. For each record, a number of QC ( $1,2,3$ or 4 ) is assigned on a uniform basis. Once a record is assigned a number of QC, INSURED nullifies the previous earnings of the record.

After the records for new immigrants are selected, the rest of the records for ages 14 to 69 are either non-covered workers or covered workers. The total number of records assigned as noncovered workers is set equal to (1-covered worker rate) * 30,000. These records receive no QC. To identify records as non-covered workers, INSURED uses two parameters (SRCH, SLCT), which vary by age and sex.

SRCH sets a limit on the number of consecutive records to be searched for a non-covered worker. In general, the younger age groups have lower SRCH values. SLCT is the number of consecutive prior years in which no QC were earned that is required in order for a simulated record to be assigned as a non-covered worker. Lower SLCT values are set for the very young and older age groups. Sensitivity analyses show that insured percentages are negatively correlated with these two parameters. When the female covered worker rates approach the male
rates, the female SRCH and SLCT values are graded toward the male values ${ }^{29}$.
For each sex and birth cohort, the simulation process of assigning records as non-covered workers uses the following approach. This approach is repeated until the targeted number of non-covered workers is achieved.

1. One of the records, which is designated as one for legal immigrants, is randomly selected as the starting record.
2. Beginning with the starting record, each record is examined until a record that matches the SLCT criterion is found.
3. However, if the number of records examined equals the value of SRCH and no record matches the SLCT criterion, then the record closest to the SLCT criterion is assigned no QC as a non-covered worker.

Initially, values for SRCH and SLCT are the same as those used in the prior Trustees Report. Adjustments to these values are only made when the results are not consistent with historical data.

The final step of the simulation process is to use QCDist to randomly assign QC of $0,1,2,3$ or 4 to the remaining covered worker records, which are not new net legal immigrants, for ages 1469.

## Determining Insured Status

Once the simulation process is complete, the insured status for each record at any age can be determined based on the total QC assigned up to that age. The simulated fully insured percentage (FSIM) is calculated as the percentage of the 30,000 simulated records meeting the QC requirements for insured status. The same calculation is applied to the disability-insured percentage (DSIM).

For each sex and cohort, FSIM and DSIM are determined at ages 13 to 69. FSIM is assumed to remain the same beyond age 69 .

A multiplicative adjustment is applied to both FSIM and DSIM to reflect future changes in the proportion of 'other immigrants' in the Social Security area population (OIMPOP) and the

[^23]proportion of 'other immigrants' whose earnings are posted to the MEF (ADJLPR) from that in the base year for each cohort. Thus the adjustment factor is
$$
\frac{1-[O I M P O P(\text { projection year }) *(1-A D J L P R(\text { projection year }))]}{1-[O I M P O P(\text { base year }) *(1-A D J L P R(\text { base year }))]} \text { by cohort and sex. }
$$

A second adjustment, DINADD, is made to DSIM. This additive adjustment accounts for workers who fail to meet the requirement for disability-insured status solely because of having no earnings while receiving disability benefits. INSURED assumes that workers who have been on the disability rolls for more than 3 years would be in this situation ${ }^{30}$. Thus, DINADD is
\# of workers on the disability rolls more than 3 years
Social Security Area population
by age, sex, and cohort.

If the adjusted results for DSIM are not consistent with historical data, an additional age-sexspecific additive adjustment (DIADJ) is used to bring the simulated results in line with the historical estimates.

Finally, incorporation of Short-Range projections produces FPRO and DPRO. For the first 10 years, FPRO and DPRO are set equal to Short-Range estimates. The difference in terms of the percentage between the Long-Range and Short-Range projections at the end of $10^{\text {th }}$ year is linearly phased out during the next ten years by cohort and sex. The Long-Range projections are assumed thereafter.

## Number of Fully Insured and Disability Insured Workers

The numbers of Fully Insured and Disability Insured workers are obtained by applying FPRO and DPRO, respectively, to the Social Security area population. The result is an estimate of the number of people that are fully insured (FINPOP) and disability insured (DINPOP) by single year of age and sex, respectively. For a given age and sex, the proportion of the Social Security area population that is insured (FPRO) is assumed to be the same for each martial status.

[^24]
## DISABILITY

## 3.2.a. Overview

The Social Security Administration pays monthly disability benefits to disability-insured workers who meet the definition of "disability". If they meet certain requirements, spouses and children of disabled-worker beneficiaries may also receive monthly benefits.

DISABILITY projects the number of disabled-worker beneficiaries in current-payment status (DIB) at the end of each year by age at entitlement, sex, and duration from entitlement. We base the number of DIB at the end of each year on the number of disabled-worker beneficiaries who are currently entitled to benefits (CE). We calculate the number of CE at the end of year by adding the number of newly entitled CE (New Entitlements) during the year and subtracting the number of CE who leave the disability rolls (Exits) during the year to the number of CE at the end of the prior year. Disabled-worker beneficiaries who leave the disability rolls (Exits) do so by recovering from disabilities (Recoveries), by dying (Deaths), or by converting to retired worker status (Conversions). A disabled-worker beneficiary converts to retired worker status upon reaching Normal Retirement Age (NRA), the age at which a person first becomes entitled to unreduced retirement benefit.

DISABILITY also projects the number of future dependent beneficiaries of DIB by category, age, and sex. The six categories are minor child, student child, disabled adult child, young spouse, married aged spouse and divorced aged spouse. We generate the numbers of dependent beneficiaries of DIB by multiplying the relevant subset of the SSA area population (Exposures) by a series of probabilities that relate to the regulations and requirements for obtaining benefits (Linkages).

$$
\left.\begin{array}{rl}
\text { New Entitlements }(\text { year })=\text { Exposure }_{\text {BOY }} \times \text { Incidence Rate }(\text { year }) \\
& \text { where BOY is beginning of year. } \\
\text { Exits(year) }= & \text { Recoveries }(\text { year })+\text { Deaths }(\text { year })+\text { Conversions }(\text { year }) \\
& \text { where Recoveries }(\text { year })=\text { CE }_{\text {BOY }} \times \text { Recovery Rate }(\text { year }) \\
& \text { where Deaths }(\text { year })=\text { CE BOY } \times \text { Death Rate }(\text { year })
\end{array}\right\}
$$

## 3.2.b. Input Data

## Trustees Assumptions

Each year, the Trustees set the assumption for the ultimate age-sex-adjusted incidence rate and the ultimate age-sex-adjusted recovery rate. We achieve this by setting the age-adjusted incidence rate and the age-adjusted recovery rate for each sex. The ultimate level for the age-sexadjusted incidence rate and for the age-sex-adjusted recovery rate is set for the twentieth year of the projection period. Then for each age group and sex, we adjust the ultimate incidence rate to match a "target" incidence rate. The following chart shows these "target" incidence rates by age group and sex.

Target Incidence Rates by Age Group

|  | Age Group |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | <19 | 20-24 | 25-29 | 30-34 | 35-39 | 40-44 | 45-49 | 50-54 | 55-59 | 60-64 | 65-69 |
| Male | 2.46 | 2.58 | 1.66 | 2.49 | 3.34 | 4.52 | 5.96 | 9.89 | 15.72 | 19.0 | 9.00 |
| Female | 1.90 | 3.02 | 1.62 | 2.82 | 3.54 | 4.78 | 6.39 | 10.10 | 14.16 | 14.7 | 8.34 |

Using a standard population of disability insured who are not in current pay as of December 1999, the age-sex-adjusted incidence rate for the 2012 Trustees Report was 5.8 per 1,000. Using a standard population of DIBs as of December 1999, the age-sex-adjusted recovery rate for the 2012 Trustees Report was 9.3 per 1,000.

## Long-Range OCACT Data

All data is updated annually except those noted otherwise. Population data are as of December 31. We assume data as of December 31 of year $z-1$ is equal to data as of January 1 of year $z$. Workflow reference is bolded in parenthesis after each item.

## Demography

- January Social Security area population by age, sex, and marital status ${ }^{31}$ (dimensioned ( $0: 100,1: 2,1: 4$ )) for beginning of years 1971-2091. (3a)
- Probabilities of death by sex, age and year (1:2,15:148,2010:2090). (3b)
- Total children by sex of parent, age of parent and age of child (dimensioned (1:2,19:71,0:18)) for beginning of years 1971-2091. (3c)
- Total married lives by age of husband crossed with age of wife (dimensioned (14:100,14:100)) for beginning of years 1971-2091. (3d)

[^25]- Average number of children under 16 per couple with children by age group (<25, 25$29, \ldots, 60-64$ ) of head of household (dimensioned (1:9)) for beginning of years 1971-2091. (3e)


## Economics

- Unemployment rates by age group (16-19, 20-24,...,60-64), sex and year (1990:2022). (3h)


## Beneficiaries (from INSURED subprocess \#3.1)

- Disability-insured population by age, sex and year (15:69,1:2,1969:2090) from the 2012 Trustees Report. (3g)
- Disability-insured population by age, sex and year (15:69,1:2,1969:2090) from the 2011 Trustees Report. (2j)
- Fully insured population by age, sex and marital status (14:95,1:2,1:4) for years 19702090. (3f)
- Death rate projection factors from the 2011 Trustees Report by age group (15-19,20$24, \ldots, 60-64)$, sex and year (1:2,1:10,2011:2090). (3i)
- Recovery rate projection factors and recovery rates from the 2011 Trustees Report by age group (15-19,20-24, ..,60-64), sex and year (1:2,1:10,2011:2090). (3j) and (3k)


## Other input data

We update only the most recent year data annually for this category except as noted otherwise below:

- The December 2011 data from the Master Beneficiary Record (MBR) containing the number of DIB by duration of entitlement, age of entitlement, sex and time of year (BOY or EOY) (0:55,15:66,1:2,1:2). (2b)
- December 2011 and December 2010 data from the MBR containing the number of DIB by age, sex and year [(15:66,1:2,1969:2011). (2a) and (2j)
- December data from the MBR containing the number of dependent beneficiaries by age, sex of the account holder, and year for the following beneficiary categories. (2a)

1) Minor child (0:17,1:2,1970:2011)
2) Student child (18:21,1:2,1970:2011)
3) Disabled adult child (age group $1: 9^{32}, 1: 2,1970: 2011$ )
4) Young spouse (19:64,1:2,1970:2011)
5) Married aged spouse (62:100,1:2,1970:2011)
6) Divorced aged spouse (62:100,1:2,1970:2011)
A. We also read totals for each category.

- December data from the MBR containing the number of DIB awards by age, sex and year (15:67,1:2,1970:2011). (2c)

[^26]- December data from the MBR containing (1) the number of DIB total terminations (recoveries and deaths) and (2) the number of conversions ${ }^{33}$. These data are by sex and year (1:2,1970:2011). (2d)
- December data from the MBR containing the number of DIB deaths by age, sex and year (15:67,1:2,1975:2011). (2d)
- December data from the MBR containing the number of estimated DIB recoveries by age, sex and year (15:67,1:2,1975:2011). (2d)
- December data from the MBR containing the number of old-age beneficiaries who at some point in time were converted to retired worker status. This data is by age, sex and year: (65:95+,1:2,1970:2011) (2b)
- December data from the MBR containing the number of DIB entitled to the Hospital Insurance portion of Medicare by age group ( $<25,25-29, \ldots, 60-64,65+$ ), sex and year (2:11,1:2,1973:2011). (2e)
- December data from the MBR containing the number of DIB awards by duration, age, sex and year ( $0: 5,0: 65,1: 2,1993: 2010$ ). 2010 Awards were retrieved for this year's TR, 1993-2009 Awards have not been updated. (2j)
- Retroactive factors ${ }^{34}$ by year (1969:2010). These values are estimated using OCACT beneficiary data. (2h)
B.

All numbers in the following categories are updated annually unless otherwise noted. C.

- Average incidence rates by age and sex $(15: 65,1: 2)$ for the base period 1996-2005 based on awards data from 1996-2010 (also known as the base incidence rates). We update these values when time and data are available. Note that rates for ages 60 through NRA are from the 2011 TR. ( $\mathbf{2 j}$ )
- Probability of death for DIB's - in a multiple-decrement environment by duration, age and sex ( $0: 10,15: 65,1: 2$ ) for the base period 2001-2005. These numbers (also known as the base probabilities of death) are from Actuarial Study No. 122. We update these values when time and data are available. (2f)
- Probability of recovery for DIB's - in a multiple-decrement environment by duration, age and sex (0:10,15:65,1:2) for the base period 2001-2005. These numbers (also known as the base probabilities of recovery) are from are from Actuarial Study No. 122. We update these values when time and data are available. (2g)
- Initial Incurred but not reported (IBNR) ${ }^{35}$ factors by duration, age and sex (0:10, 15: 69, 1:2) based on 2002 entitlements (awards data from 2002-2007). (2j) (Not Updated)
- Ultimate IBNR factors by duration, age and sex (0:10, 15: 69, 1:2) based on 1996-2005

[^27]entitlements (awards data from 1996-2010). We update these values when time and data are available. The IBNR calculation linearly grades between the initial and ultimate IBNR factors during the ten years from 2008-2017. The ultimate IBNR factor table applies for all years after 2017. (2j)

- For each year 2000-2090, (1) the Normal Retirement Age (NRA), (2) the proportion of DIBs who stay on the DI roll for that age, and (3) the proportion of DIBs who convert to an old-age benefit during that year for that age. We update these values only when there is a change in the NRA or in the present law. ( $2 \mathbf{k}$ )
- For the years 2016-2026, weights for ages 61-66 for linear interpolating between one set of incidence rates at a particular NRA and another set of incidence rates at the next higher NRA. We update these values only when there is a change in the NRA or in the present law. (4b)
- The following linkages for the calculations of auxiliary beneficiaries; the probability that student is in an eligible school, the probability that adult child is disabled, the probability that beneficiary is not subject to the earnings test, and the probability that beneficiary was married 10 or more years are estimated and are updated when time and data are available. (4a)
- Short-Range/Long-Range adjustment (APROJ) factors by auxiliary beneficiary category (1:7) for years 2012-2031. These seven categories are; minor child, student child, disabled adult child, young wife, young husband, age wife and aged husband. We calculate these values by comparing Short-Range and Long- Range numbers for auxiliary beneficiaries. (2i)
- IPROJG, DPROJG and RPROJG adjustment factors used to adjust incidence, death and recovery rates to reconcile between the long-range model and the short-range model. IPROJG (1:11, 2, 2012-2090) and DPROJG (1:10, 2, 2012-2090) adjustment factors are by age group, sex and year. RPROJG (2, 2012-2021) adjustment factors are by sex and year. (2l),(4i), and (4d)
- Ultimate RPROJG values by sex and age group (1:2, 1:10) calculated to reach a target value. Updated when the probabilities of recovery for DIB's are updated. (4d)


## 3.2.c. Development of Output

## Equation 3.2.1 - New Entitlements

We calculate new entitlements by multiplying age-sex-specific incidence rates to the exposed population at the beginning of the year. The exposed population is the disability-insured population less the currently entitled population. We calculate future age-sex-specific incidence rates by multiplying the base incidence rates by the incidence rate projection factors (IPROJGs). For the first ten years of the projection (short-range period), IPROJGs by 5-year age group and sex are obtained by using regression equations and independent variables of unemployment rates and previous years' incidence rates. We describe the regression equations in detail in Appendix 3.2-1. Then, we run the IPROJGs through the main model and analyze the resulting incidence
rates by age group and sex. We adjust the IPROJGs by age and sex to reach "target" incidence rates. These "target" incidence rates were determined based on a recent review of historical and projected award rates by age group and sex. We reach ultimate age-sex-specific incidence rates in the twentieth year of the projection period. For projection periods between the tenth and twentieth years, we linearly interpolate the IPROJGs between the ultimate IPROJGs values and the IPROJGs values at the end of short-range period. Additional adjustments to the IPROJGs during the short-range period may be necessary for reconciliation between the long-range model and the short-range model. For the 2012 Trustees Report, we made IPROJG adjustments in the short-range period to better project the drop in disability claims as we recover from the current economic recession.

## Equation 3.2.2 - Exits

The long-range model projects three types of exits from the disability rolls; death, recovery and conversion to an old-age beneficiary upon reaching normal retirement age (NRA). Deaths and recoveries are projected by multiplying the beginning currently entitled population by the probabilities of death only and recovery only, $\left(q_{x}^{(d)}\right)$ and $\left(q_{x}^{(r)}\right)$, respectively. Projected ( $q_{x}^{(d)}$ ) and $\left(q_{x}^{(r)}\right)$ by age, sex, and duration are calculated by multiplying the base probabilities by the respective projection factors by age group and sex for that year.

For the first ten years, we derive the recovery projection factors (RPROJGs) by age group and sex from linear interpolation between an estimated starting level for the RPROJGs and an estimated tenth-year projection target level for the RPROJGs. For each age group and sex, we calculate the starting RPROJGs the following way:

$$
\begin{gathered}
\operatorname{RPROJG}^{\mathrm{TR12}}(2011)=\text { RPROJG }^{\mathrm{TR11}}(2011) \times \text { actual recovery rate }(2011) / \text { estimated } \\
\text { recovery rate }{ }^{\mathrm{TR} 11}(2011)
\end{gathered}
$$

Because there is no apparent upward or downward trend, we use the average recovery rates for the last ten historical years as the target values for the $10^{\text {th }}$ year (2021). Then, for each age group and sex, we calculate the tenth year's RPROJGs as follows:

$$
\begin{aligned}
& \operatorname{RPROJG}^{\mathrm{TR12}}(2021)= \operatorname{RPROJG}^{\mathrm{TR12}}(2011) \times \text { target value recovery rate }(2021) / \\
& \text { actual recovery rate }(2011)
\end{aligned}
$$

For the second 10 years of the projection period, we linearly interpolate between the ultimate RPROJG value and the RPROJG value at the end of short-range period (2021). We assume attainment of ultimate recovery rates in the twentieth year of the projection period. Ultimate recovery rates by age group and sex are determined by analyzing historical recovery rates. We may make additional adjustments to the RPROJGs to reconcile with the short-range model.

For the first year of the projection period, the death projection factors (DPROJGs) by age group and sex are determined so that they achieve a targeted death rate. The targeted death rate is
determined by fitting an exponential curve to historical death rates for DIBs by age group and sex (see Appendix 3.2-1). For the rest of the projection period, we assume the DPROJGs improve at the same rate as the general population for that age group and sex. We calculate the DPROJGs for each year by 5-year age group and sex the following way:


## Equation 3.2.3 - Disabled-Worker Beneficiaries

The projection begins with the latest data available from the mainframe of disabled-worker beneficiaries in current-payment status. This data is from a 100 percent sample of the Master Beneficiary Record (MBR) at the end of the year. We split up disabled-worker beneficiaries by age at entitlement, sex and duration of entitlement. We convert this population to a currently entitled population by dividing each age, sex and duration cell by the appropriate duration-age-sex-year-specific IBNR factor. An iterative process begins with new entitlements added to and exits subtracted from the previous year's currently entitled population to get the following year's currently entitled population with advancement of duration within the age of entitlement. We reduce this currently entitled population by multiplying by the appropriate duration-age-sex-year-specific IBNR factor. The result is the following year's disabled-worker beneficiaries in current-payment status. The process repeats over each sex, age of entitlement and duration of entitlement throughout the projection period.

## Equation 3.2.4 - Dependent Beneficiary of Disabled Workers

There are six dependent-beneficiary categories; minor child, student child, disabled adult child, young spouse, married aged spouse and divorced aged spouse. We disaggregate projections by age of the beneficiary and sex of the account holder. We detail below the linkages and exposures used in each category of dependent beneficiaries.

## Minor Child

Exposure: Single SSA population by single ages 0-17
Linkages: pMCAGA = Probability that parent is under NRA pMCDIA = Probability that parent is disability insured given that the parent is under NRA
pMCDPA = Probability that disability insured parent under NRA is disabled

MCRES $\quad=$ Residual Factor
Student Child
Exposure: Single SSA population by single ages 18-19
Linkages: pSCAGA = Probability that parent is under NRA
pSCDIA = Probability that parent is disability insured given
that the parent is under NRA
pSCDPA = Probability that disability insured parent under
NRA is disabled
pSCDPC $\quad=$ Probability that student is in an eligible school
SCRES $\quad=$ Residual Factor
Disabled Adult Child
Exposure: Single SSA population by age groups 18-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59
Linkages: pDCAGA = Probability that parent is under NRA pDCDIA = Probability that parent is disability insured given that the parent is under NRA pDCDPA $\quad=$ Probability that disability insured parent under NRA is disabled
pDCDPC $\quad=$ Probability that adult child is disabled
DCRES $\quad=$ Residual Factor

## Young Spouse

Exposure: Married SSA population by sex and by single ages 20-64
Linkages: pYSAGA = Probability that account holder is under NRA pYSDIA = Probability that account holder is disability insured given that the account holder is under NRA pYSDPA = Probability that disability insured account holder under NRA is disabled pYSETB = Probability that young spouse is not subject to earnings test
pYSMCB = Probability that young spouse has a minor child beneficiary in his/her care
pYSDCB = Probability that young spouse has a disabled child beneficiary in his/her care
YSRES $\quad=$ Residual Factor

## Married Aged Spouse

Exposure: Married SSA population by sex and by single ages 62-100
Linkages: pMSAGA = Probability that account holder is under NRA pMSDIA = Probability that account holder is disability insured given that the account holder is under NRA
pMSDPA = Probability that disability insured account holder under NRA is disabled pMSFIB = Probability that beneficiary is not insured MSRES $\quad=$ Residual Factor

## Divorced Aged Spouse

Exposure: Divorced SSA population by sex and by single ages 62-100
Linkages: pDSDEA = Probability that account holder is living

$$
\begin{array}{ll}
\text { pDSAGA } & =\text { Probability that account holder is under NRA } \\
\text { pDSDIA } & =\text { Probability that account holder is disability } \\
\text { insured given that the account holder is under } \\
& \text { NRA } \\
\text { pDSDPA } & =\text { Probability that disability insured account holder } \\
\begin{array}{ll}
\text { under NRA is disabled } \\
\text { pDSFIB } & =
\end{array} \\
\begin{array}{ll}
\text { pDSDMB } & = \\
& \\
& \text { Probability that beneficiary is not insured that beneficiary was married } 10 \text { or }
\end{array}
\end{array}
$$

We estimate the residual factors for each of the dependent categories using a 10-year Least Squares regression formula. We then hold these residual factor values constant for the duration of the long-range period. If the 10-year Least Squares method results in a negative residual factor, we hold the last historical residual factor instead.

We develop APROJ factors for a dependent beneficiary category to match short-range results during the first 10 years of the projection period. We phase these factors out linearly over the second ten years of the projection period.

## Appendix: 3.2-1

The following information provides details about the regression equations used in determining incidence rates and IPROJG values by age group and sex for the first ten years of the projection period.

| Male |  |
| :--- | :--- |
| Independent Variable: | $16-19$ unemployment rates |
| Independent Variable: | $15-19$ incidence rates |
| Dependent Variable: | $15-19$ incidence rates |
| Observation Period: | $1994-2008$ |
| Adjusted R square: | 0.87592031 |
| Standard Deviation: | 0.26952734 |
| Coefficient Intercept: | 0.31907618 |
| Coefficient Slope1: | 0.03768082 |
| Coefficient Slope2: | 0.91483690 |
|  |  |
| Independent Variable: | $20-24$ unemployment rates |
| Independent Variable: | $20-24$ incidence rates |
| Dependent Variable: | $20-24$ incidence rates |
| Observation Period: | $1994-2008$ |
| Adjusted R square: | 0.90023771 |
| Standard Deviation: | 0.18122283 |
| Coefficient Intercept: | 0.40571362 |
| Coefficient Slope1: | 0.10071368 |
| Coefficient Slope2: | 0.84881002 |
|  |  |
| Independent Variable: | $25-29$ unemployment rates |
| Independent Variable: | $25-29$ incidence rates |
| Dependent Variable: | $25-29$ incidence rates |
| Observation Period: | $1994-2008$ |
| Adjusted R square: | 0.82962675 |
| Standard Deviation: | 0.10648437 |
| Coefficient Intercept: | 0.57630210 |
| Coefficient Slope1: | 0.10384858 |
| Coefficient Slope2: | 0.69862588 |
|  |  |
| Independent Variable: | $30-34$ unemployment rates |
| Independent Variable: | $30-34$ incidence rates |
| Dependent Variable: | $30-34$ incidence rates |
| Observation Period: | $1994-2008$ |
|  |  |


| Adjusted R square: | 0.78934072 |
| :--- | :--- |
| Standard Deviation: | 0.10358783 |
| Coefficient Intercept: | 0.75385056 |
| Coefficient Slope1: | 0.07232040 |
| Coefficient Slope2: | 0.67585033 |
|  |  |
| Independent Variable: | $35-39$ unemployment rates |
| Independent Variable: | $35-39$ incidence rates |
| Dependent Variable: | $35-39$ incidence rates |
| Observation Period: | $1994-2008$ |
| Adjusted R square: | 0.72963963 |
| Standard Deviation: | 0.14971031 |
| Coefficient Intercept: | 0.78791141 |
| Coefficient Slope1: | 0.10351517 |
| Coefficient Slope2: | 0.74110051 |
|  |  |
| Independent Variable: | $40-44$ unemployment rates |
| Independent Variable: | $40-44$ incidence rates |
| Dependent Variable: | $40-44$ incidence rates |
| Observation Period: | $1994-2008$ |
| Adjusted R square: | 0.66626444 |
| Standard Deviation: | 0.19075634 |
| Coefficient Intercept: | 1.15519471 |
| Coefficient Slope1: | 0.11968510 |
| Coefficient Slope2: | 0.72345678 |
| Independent Variable: | $45-49$ unemployment rates |
| Independent Variable: | $45-49$ incidence rates |
| Dependent Variable: | $45-49$ incidence rates |
| Observation Period: | $1994-2008$ |
| Adjusted R square: | 0.68901098 |
| Standard Deviation: | 0.21804816 |
| Coefficient Intercept: | 1.25517751 |
| Coefficient Slope1: | 0.15918972 |
| Coefficient Slope2: | 0.77677004 |
| Independent Variable: | $50-54$ unemployment rates |
| Independent Variable: | $50-54$ incidence rates |
| Dependent Variable: | $50-54$ incidence rates |
| Observation Period: | $1994-2008$ |
|  |  |


| Adjusted R square: | 0.70824011 |
| :---: | :---: |
| Standard Deviation: | 0.34815393 |
| Coefficient Intercept: | 1.70174193 |
| Coefficient Slope1: | 0.28656874 |
| Coefficient Slope2: | 0.81210795 |
| Independent Variable: | 55-59 unemployment rates |
| Independent Variable: | 55-59 incidence rates |
| Dependent Variable: | 55-59 incidence rates |
| Observation Period: | 1994-2008 |
| Adjusted R square: | 0.68845817 |
| Standard Deviation: | 0.50099565 |
| Coefficient Intercept: | 2.03264215 |
| Coefficient Slope1: | 0.36150782 |
| Coefficient Slope2: | 0.85735008 |
| Independent Variable: | 60-64 unemployment rates |
| Independent Variable: | 60-64 incidence rates |
| Dependent Variable: | 60-64 incidence rates |
| Observation Period: | 1994-2008 |
| Adjusted R square: | 0.62125805 |
| Standard Deviation: | 0.50886788 |
| Coefficient Intercept: | 2.39288574 |
| Coefficient Slope1: | 0.17783397 |
| Coefficient Slope2: | 0.84524959 |
| Female |  |
| Independent Variable: | 16-19 unemployment rates |
| Independent Variable: | 15-19 incidence rates |
| Dependent Variable: | 15-19 incidence rates |
| Observation Period: | 1994-2008 |
| Adjusted R square: | 0.93105656 |
| Standard Deviation: | 0.12911705 |
| Coefficient Intercept: | 0.27869452 |
| Coefficient Slope1: | 0.06229602 |
| Coefficient Slope2: | 0.86778326 |
| Independent Variable: | 20-24 unemployment rates |
| Independent Variable: | 20-24 incidence rates |
| Dependent Variable: | 20-24 incidence rates |


| Observation Period: | 1994-2008 |
| :---: | :---: |
| Adjusted R square: | 0.85931782 |
| Standard Deviation: | 0.15923987 |
| Coefficient Intercept: | 0.33375514 |
| Coefficient Slope1: | 0.09646905 |
| Coefficient Slope2: | 0.83778716 |
| Independent Variable: | 25-29 unemployment rates |
| Independent Variable: | 25-29 incidence rates |
| Dependent Variable: | 25-29 incidence rates |
| Observation Period: | 1994-2008 |
| Adjusted R square: | 0.88190773 |
| Standard Deviation: | 0.10817669 |
| Coefficient Intercept: | 0.28406716 |
| Coefficient Slope1: | 0.10167717 |
| Coefficient Slope2: | 0.85665601 |
| Independent Variable: | 30-34 unemployment rates |
| Independent Variable: | 30-34 incidence rates |
| Dependent Variable: | 30-34 incidence rates |
| Observation Period: | 1994-2008 |
| Adjusted R square: | 0.85652621 |
| Standard Deviation: | 0.11474280 |
| Coefficient Intercept: | 0.29460312 |
| Coefficient Slope1: | 0.11250733 |
| OCoefficient Slope2: | 0.89102669 |
| Independent Variable: | 35-39 unemployment rates |
| Independent Variable: | 35-39 incidence rates |
| Dependent Variable: | 35-39 incidence rates |
| Observation Period: | 1994-2008 |
| Adjusted R square: | 0.82550460 |
| Standard Deviation: | 0.15690038 |
| Coefficient Intercept: | 0.52249297 |
| Coefficient Slope1: | 0.13959911 |
| Coefficient Slope2: | 0.86060054 |
| Independent Variable: | 40-44 unemployment rates |
| Independent Variable: | 40-44 incidence rates |
| Dependent Variable: | 40-44 incidence rates |


| Observation Period: | 1994-2008 |
| :---: | :---: |
| Adjusted R square: | 0.87828183 |
| Standard Deviation: | 0.17171613 |
| Coefficient Intercept: | 0.66867071 |
| Coefficient Slope1: | 0.16968883 |
| Coefficient Slope2: | 0.87207310 |
| Independent Variable: | 45-49 unemployment rates |
| Independent Variable: | 45-49 incidence rates |
| Dependent Variable: | 45-49 incidence rates |
| Observation Period: | 1994-2008 |
| Adjusted R square: | 0.86834538 |
| Standard Deviation: | 0.17812611 |
| Coefficient Intercept: | 0.75279000 |
| Coefficient Slope1: | 0.26517183 |
| Coefficient Slope2: | 0.88578155 |
| Independent Variable: | 50-54 unemployment rates |
| Independent Variable: | 50-54 incidence rates |
| Dependent Variable: | 50-54 incidence rates |
| Observation Period: | 1994-2008 |
| Adjusted R square: | 0.70669725 |
| Standard Deviation: | 0.26069642 |
| Coefficient Intercept: | 1.06212292 |
| Coefficient Slope1: | 0.27148603 |
| Coefficient Slope2: | 0.89329027 |
| Independent Variable: | 55-59 unemployment rates |
| Independent Variable: | 55-59 incidence rates |
| Dependent Variable: | 55-59 incidence rates |
| Observation Period: | 1994-2008 |
| Adjusted R square: | 0.67979239 |
| Standard Deviation: | 0.37488473 |
| Coefficient Intercept: | -1.00655324 |
| Coefficient Slope1: | 0.44570560 |
| Coefficient Slope2: | 1.05957310 |
| Independent Variable: | 60-64 unemployment rates |
| Independent Variable: | 60-64 incidence rates |
| Dependent Variable: | 60-64 incidence rates |


| Observation Period: | $1994-2008$ |
| :--- | :--- |
| Adjusted R square: | 0.59423471 |
| Standard Deviation: | 0.36153573 |
| Coefficient Intercept: | 2.53812543 |
| Coefficient Slope1: | 0.05905872 |
| Coefficient Slope2: | 0.80517349 |

The following information provides details about the exponentially fitted equations used in determining death rates by age group and sex for the first year of the projection period.

## Male

| Independent Variable: | Year |
| :--- | :--- |
| Independent Variable: | $15-19$ death rates |
| Observation Period: | $2002-2011$ |
| Adjusted R square: | 0.31127 |
| Standard Deviation: | 0.78949 |
| Coefficient Intercept: | 395.19545 |
| Coefficient Slope1: | -0.19567 |
|  |  |
| Independent Variable: | Year |
| Independent Variable: | $20-24$ death rates |
| Observation Period: | $2002-2011$ |
| Adjusted R square: | 0.46719 |
| Standard Deviation: | 0.07487 |
| Coefficient Intercept: | 51.92561 |
| Coefficient Slope1: | -0.02458 |
|  |  |
| Independent Variable: | Year |
| Independent Variable: | $25-29$ death rates |
| Observation Period: | $2002-2011$ |
| Adjusted R square: | 0.83462 |
| Standard Deviation: | 0.04507 |
| Coefficient Intercept: | 70.34146 |
| Coefficient Slope1: | -0.03381 |
|  |  |
| Independent Variable: | Year |
| Independent Variable: | $30-34$ death rates |
| Observation Period: | $2002-2011$ |
| Adjusted R square: | 0.94083 |


| Standard Deviation: | 0.03208 |
| :--- | :--- |
| Coefficient Intercept: | 87.73767 |
| Coefficient Slope1: | -0.04240 |
|  |  |
| Independent Variable: | Year |
| Independent Variable: | $35-39$ death rates |
| Observation Period: | $2002-2011$ |
| Adjusted R square: | 0.96577 |
| Standard Deviation: | 0.01969 |
| Coefficient Intercept: | 72.33878 |
| Coefficient Slope1: | -0.03461 |
|  |  |
| Independent Variable: | Year |
| Independent Variable: | $40-44$ death rates |
| Observation Period: | $2002-2011$ |
| Adjusted R square: | 0.97289 |
| Standard Deviation: | 0.01654 |
| Coefficient Intercept: | 68.85215 |
| Coefficient Slope1: | -0.03277 |
|  |  |
| Independent Variable: | Year |
| Independent Variable: | $45-49$ death rates |
| Observation Period: | $2002-2011$ |
| Adjusted R square: | 0.98230 |
| Standard Deviation: | 0.01035 |
| Coefficient Intercept: | 54.45379 |
| Coefficient Slope1: | -0.02548 |
|  |  |
| Independent Variable: | Year |
| Independent Variable: | $50-54$ death rates |
| Observation Period: | $2002-2011$ |
| Adjusted R square: | 0.89608 |
| Standard Deviation: | 0.01845 |
| Coefficient Intercept: | 39.66553 |
| Coefficient Slope1: | -0.01801 |
|  |  |
| Independent Variable: | Year |
| Independent Variable: | $55-59$ death rates |
| Observation Period: | $2002-2011$ |
| Adjusted R square: | 0.84791 |
|  |  |


| Standard Deviation: | 0.01347 |
| :---: | :---: |
| Coefficient Intercept: | 24.95313 |
| Coefficient Slope1: | -0.01061 |
| Independent Variable: | Year |
| Independent Variable: | 60-64 death rates |
| Observation Period: | 2002-2011 |
| Adjusted R square: | 0.98113 |
| Standard Deviation: | 0.00909 |
| Coefficient Intercept: | 47.25188 |
| Coefficient Slope1: | -0.02166 |
| Female |  |
| Independent Variable: | Year |
| Independent Variable: | 15-19 death rates |
| Observation Period: | 2002-2011 |
| Adjusted R square: | 0.34168 |
| Standard Deviation: | 0.39584 |
| Coefficient Intercept: | 210.81248 |
| Coefficient Slope1: | -0.10379 |
| Independent Variable: | Year |
| Independent Variable: | 20-24 death rates |
| Observation Period: | 2002-2011 |
| Adjusted R square: | 0.51885 |
| Standard Deviation: | 0.06774 |
| Coefficient Intercept: | 51.46650 |
| Coefficient Slope1: | -0.02440 |
| Independent Variable: | Year |
| Independent Variable: | 25-29 death rates |
| Observation Period: | 2002-2011 |
| Adjusted R square: | 0.72636 |
| Standard Deviation: | 0.05663 |
| Coefficient Intercept: | 64.79946 |
| Coefficient Slope1: | -0.03110 |
| Independent Variable: | Year |
| Independent Variable: | 30-34 death rates |
| Observation Period: | 2002-2011 |


| Adjusted R square: | 0.86153 |
| :---: | :---: |
| Standard Deviation: | 0.03608 |
| Coefficient Intercept: | 62.67059 |
| Coefficient Slope1: | -0.02999 |
| Independent Variable: | Year |
| Independent Variable: | 35-39 death rates |
| Observation Period: | 2002-2011 |
| Adjusted R square: | 0.85290 |
| Standard Deviation: | 0.02802 |
| Coefficient Intercept: | 47.80490 |
| Coefficient Slope1: | -0.02250 |
| Independent Variable: | Year |
| Independent Variable: | 40-44 death rates |
| Observation Period: | 2002-2011 |
| Adjusted R square: | 0.94160 |
| Standard Deviation: | 0.01990 |
| Coefficient Intercept: | 56.00680 |
| Coefficient Slope1: | -0.02649 |
| Independent Variable: | Year |
| Independent Variable: | 45-49 death rates |
| Observation Period: | 2002-2011 |
| Adjusted R square: | 0.95704 |
| Standard Deviation: | 0.01470 |
| Coefficient Intercept: | 49.13993 |
| Coefficient Slope1: | -0.02297 |
| Independent Variable: | Year |
| Independent Variable: | 50-54 death rates |
| Observation Period: | 2002-2011 |
| Adjusted R square: | 0.94133 |
| Standard Deviation: | 0.01488 |
| Coefficient Intercept: | 42.84140 |
| Coefficient Slope1: | -0.01975 |
| Independent Variable: | Year |
| Independent Variable: | 55-59 death rates |
| Observation Period: | 2002-2011 |


| Adjusted R square: | 0.98643 |
| :--- | :--- |
| Standard Deviation: | 0.00802 |
| Coefficient Intercept: | 48.70381 |
| Coefficient Slope1: | -0.02262 |
|  |  |
| Independent Variable: | Year |
| Independent Variable: | $60-64$ death rates |
| Observation Period: | $2002-2011$ |
| Adjusted R square: | 0.98134 |
| Standard Deviation: | 0.00936 |
| Coefficient Intercept: | 48.47717 |
| Coefficient Slope1: | -0.02244 |

### 3.3. Old-Age and Survivors Insurance

## 3.3.a. Overview

Every month, the Social Security program pays benefits to retired workers and their dependents. It also provides benefits to eligible dependents of deceased workers. The OLD-AGE AND SURVIVORS subprocess projects the number of people expected to receive benefits over the next 75 years. The projection method is very similar to the method used for dependent beneficiaries of disabled workers in the DISABILITY subprocess. We compute the projection of beneficiaries by multiplying a subset of the Social Security area population by a series of probabilities of the conditions that a person must meet to receive benefits. The main program receives all necessary input data and performs all preliminary calculations. It then calls each individual beneficiary type subroutine where it makes all beneficiary calculations.

We categorize retired workers and their dependent beneficiaries as follows:

- retired workers ( $R W N$ ) by age (62-95+), sex, and marital status (single, married, widowed, divorced)
- aged spouses of retired workers ( $A S R W N$ ), by age (62-95+), sex of the account holder, and marital status of the beneficiary (married, divorced)
- young spouses of retired workers (YSRWN) by age-group (under 25, 25-29, .., 6569) and sex of the account holder
- minor, student, and disabled adult children of retired workers (MCRWN, SCRWN, and $D C R W N$, respectively) by age of the child ( $0-17$ for minor, 18-19 for student, age groups 18-19, 20-24, ..., 55-59, 60+ for disabled adult) and sex of the account holder

Dependent beneficiaries of deceased workers include:

- aged spouses of deceased workers, $A S D W N$, by age (60-95+), sex of the account holder, marital status (widowed, divorced) and insured status (insured, uninsured)
- disabled spouses of deceased workers (DSDWN) by age (50-69), sex of the account holder and marital status (widowed, divorced)
- young spouses of deceased workers (YSDWN) by age-group (under 25, 25-29,..., 65-69), sex of the account holder and marital status of the beneficiary (widowed, divorced)
- minor, student, and disabled adult children of deceased workers (MCDWN, $S C D W N$, and $D C D W N$, respectively) by age of the child (0-17 for minor, 18-19 for student, age groups 18-19, 20-24,..., 55-59, 60+ for disabled adult) and sex of the account holder

Lastly, we estimate the number of deaths of insured workers (LUMSUM) by 5-year age group (20-24, 25-29, ..., 80-84, 85+) and sex.

Equations 3.3.1-13 indicates the flow of calculations of beneficiaries.

$$
\begin{align*}
A S D W N & =A S D W N(\cdot)  \tag{3.3.1}\\
R W N & =R W N(\cdot)  \tag{3.3.2}\\
A S R W N & =A S R W N(\cdot)  \tag{3.3.3}\\
D S D W N & =D S D W N(\cdot)  \tag{3.3.4}\\
M C R W N & =M C R W N(\cdot)  \tag{3.3.5}\\
M C D W N & =M C D W N(\cdot)  \tag{3.3.6}\\
S C R W N & =S C R W N(\cdot)  \tag{3.3.7}\\
S C D W N & =S C D W N(\cdot)  \tag{3.3.8}\\
D C R W N & =D C R W N(\cdot)  \tag{3.3.9}\\
D C D W N & =D C D W N(\cdot)  \tag{3.3.10}\\
Y S R W N & =Y S R W N(\cdot)  \tag{3.3.11}\\
Y S D W N & =Y S D W N(\cdot)  \tag{3.3.12}\\
L U M S U M & =L U M S U M(\cdot) \tag{3.3.13}
\end{align*}
$$

The appendix 3.3-1 at the end of this section provides a listing with explanation of the acronyms used in this documentation.

## 3.3.b. Input Data

We update all data annually unless otherwise noted. Timing of data received is denoted 'BOY' (beginning of year) or 'EOY' (end of year).

## Long-Range OCACT Data

## Demography

- Social Security area population by year (EOY 1970-2090), single year of age (0-100+), sex, and marital status (single, married, widowed, divorced)
- Deaths by year (during years 2011-2090), age group (20-24,...,80-84, 85+) and sex
- Average number of children per family by year (EOY 1970-2090), and age group of the householder (20-24,...,60-64)
- Children by year (EOY 1970-2090), single year of age (0-18), sex of primary account holder (parent), status of primary (retired or deceased), and age of the other parent (15-19,20-24,...,65-69, 70+, total ages)
- Married couples by year (EOY 1970-2090), age of husband (62-95+) and age of wife (62-95+)
- Persons with an aged spouse by year (EOY 1970-2090), age group (15-24, 25-29,...,6569) and sex
- Probabilities of death by year (EOY 1941-2100), single year of age (-1,100), and sex


## Economics

- Covered wages and employment in the Federal Civilian and State and Local Sectors (during years 1998-2090)
- Labor force participation rates for age 62 by year (during years 1970-2090) and sex


## Beneficiaries

- Fully insured persons by year (EOY 1969-2090), age (14-95+), sex, and marital status (single, married, widowed, divorced)
- $\quad$ Disabled-worker beneficiaries in current pay by year (EOY 1970-2090), age (62-66) and sex
- $\quad$ Converted DI to OAI beneficiaries by year (EOY 1970-2090), age(65-95+) and sex
- Disability prevalence rates by year (EOY 1970-2090), age (50-66) and sex


## Short-Range OCACT Data

- $\quad$ Insured aged spouses of deceased workers by year (EOY 1974-2011), age (60-95+) and sex
- $\quad$ Retired worker beneficiaries in-current-pay status by age (62-70, 70+) and sex for EOY 2010-2021
- We receive the following for EOY 2011:
a. Aged spouses of deceased workers by age (60-95+), sex and marital status (widowed, divorced)
b. Retired workers by age (62-95+) and sex
c. Aged spouses of retired workers by age (62-95+), sex and marital status (married, divorced)
d. Disabled widow(er)s by age (50-64), sex and marital status (widowed, divorced)
e. Minor children by age (0-17), sex of parent and status of parent (retired, deceased)
f. Student children by age (18-19), sex of parent and status of parent (retired, deceased)
g. Disabled adult children by age ( $20-95+$ ), sex of parent and status of parent (retired, deceased)
h. Young spouses of retired workers by age group (under 25, 25-29,...,60-64, 65-69) and sex
i. Young spouses of deceased workers by age group (under $25,25-29, \ldots, 65-69$ ), sex and marital status (widowed, divorced)
j. Total parent beneficiaries

Note: Each year, we append data for the most recent historical year.

- We receive the following for EOY 2021:
a. Retired workers by age group (62-64, 65-69) and sex
b. Insured widows by age group ( $60-64, \ldots, 80-84,85+$ )
c. Uninsured widows by age group (60-64, 65+)
d. Total disabled widows
e. Female young spouses of deceased workers
f. Female aged spouses of retired workers by age group (62-64, 65+)
g. Female young spouses of retired workers
h. Minor children by status of parent
i. Student children by status of parent
j. Disabled adult children by status of parent
- Total amount of lump-sum death payments during 2010


## Other Input Data

- For EOY 1970-2004, obtained from the MBR10PER dataset on the mainframe:
a. Aged spouses of deceased workers by age (60-95+), sex and marital status (widowed, divorced)
b. Retired workers by age (62-95+) and sex
c. Aged spouses of retired workers by age (62-95+), sex and marital status (married, divorced)
d. Disabled widow(er)s by age (50-64), sex and marital status (widowed, divorced)
e. Minor children by age (0-17), sex of parent and status of parent (retired, deceased)
f. Student children by age (18-19), sex of parent and status of parent (retired, deceased)
g. Disabled adult children by age (20-95+), sex of parent and status of parent (retired, deceased)
h. Young spouses of retired workers by age group (under 25, 25-29,...,60-64) and sex
i. Young spouses of deceased workers by age group (under $25,25-29, \ldots, 65-69$ ), sex and marital status (widowed, divorced)
j. Total parent beneficiaries

Note: We will not update this data.

- $\quad$ Number of beneficiaries with benefits withheld due to receipt of a significant government pension by sex and marital status (married, widowed) for EOY 2010 from the 2011 Annual Statistical Supplement
- Age distribution of beneficiaries with benefits withheld due to receipt of a significant government pension by age (60-95+) and sex, computed as an average from the 2006 through 2010 WEP 100-percent sample (Note: these values are only updated about every five years and will be based on averages from five years of data.)
- Proportions of disabled adult children of retired and deceased workers (proportioned by age and sex of the child) from the 2003 MBR ten-percent sample. (Note: The RSB
program calculates disabled adult children by sex of the primary account holder, not by sex of the child. The RSB program outputs a file, which we use for Annual Update \#9, which calculates beneficiaries by sex. Therefore, we apply the 2003 proportions to estimate the breakdown of disabled adult children by sex of the child. We will not update this input.). Not used for SOSI.
- $\quad$ Schedule of normal retirement age ( $N R A$ ), delayed retirement credit, and actuarial reduction factors for ages more than 3 years below $N R A$ and less than 3 years below $N R A$ for years 1970-2090 from the Social Security website (Note: these values are only updated when there is a Social Security law change regarding the NRA)
- Elasticity factors by age (65-69) and sex for the elimination of the earnings test after NRA (Note: these values were not updated for 2012)
- $\quad$ Prevalence rate regression coefficients (slope and y-intercept value by sex)
- Regressed prevalence rate by sex for the most recent historical year
- Adjustment factors which account for the difference between estimated and actual historical retired worker prevalence rates by year (EOY 1970-2090), age (63-69) and sex
- Adjustment factors which account for the difference between projected beneficiary values for the tenth year of the projection period made by the Long-Range and ShortRange offices. Factors are computed for:
a. Retired workers by age group (62-64, 65-69) and sex
b. Insured widows by age group ( $60-64, \ldots, 80-84,85+$ )
c. Uninsured widows by age group (60-64, 65+)
d. Total disabled widows
e. Female young spouses of deceased workers
f. Female aged spouses of retired workers by age group (62-64, 65+)
g. Female young spouses of retired workers
h. Minor children by status of parent
i. Student children by status of parent
j. Disabled adult children by status of parent


## 3.3.c. Development of Output

We use several acronyms to describe the equations presented below. Acronyms not preceded by a subscript generally refer to the number of beneficiaries. For example, RWN refers to the number of retired workers. Acronyms preceded with a ' $p$ ' refer to probabilities. For example, $p R W_{F I A}$ refers to the probability that a person is fully insured.

## Equation 3.3.1 - Aged Spouses of Deceased Workers (ASDWN)

We project the number of aged spouses of deceased workers (widow(er)s), along with all linkage factors, by age, sex of the account holder ( $s a=1$ for male, $s a=2$ for female), marital status and insured status. Age ranges from 60 to 95+, marital status includes widowed (mb=1) and divorced ( $\mathrm{mb}=2$ ), and insured status includes insured ( $\mathrm{in}=1$ ) and uninsured (in=2). Note that all variables preceded by the letter $p$ refer to calculated probabilities. We calculate the projected number of insured aged spouses of deceased workers age 60 to 70 , and uninsured aged spouses of deceased workers age 60 to 95+ as follows:

$$
\begin{gather*}
A S D W N=A S D W_{P O P} \times p A S D W_{D E A} \times p A S D W_{F I A} \times p A S D W_{M B B}  \tag{3.3.1}\\
\times p A S D W_{F I B} \times p A S D W_{G P B} \times p A S D W_{R E S}
\end{gather*}
$$

We calculate the projected number of insured aged spouses of deceased workers over age 70 by applying termination rates to the population already receiving such benefits:
$\boldsymbol{A S D} \boldsymbol{W}_{\boldsymbol{P O P}}$ represents the subset of the population from which we draw these beneficiaries. We set this equal to the Social Security area population $\left(S S A P O P_{m b}\right)$ for each possible marital status.

$$
A S D W_{P O P}=S S A P O P_{m b}
$$

$\boldsymbol{p} \boldsymbol{A} \boldsymbol{S} \boldsymbol{D} \boldsymbol{W}_{\boldsymbol{D E A}}$ represents the probability that the primary account holder (PAH) is deceased. For the widowed population, we set this factor equal to one. For the divorced population, we set this factor equal to the portion of the total widowed $\left(S S A P O P_{\text {wid }}\right)$ and married $\left(S S A P O P_{m a r}\right)$ population who are widowed.

$$
p A S D W_{D E A}=\left\{\begin{array}{cc}
1, & m b=1 \text { (widowed) } \\
\frac{S S A P O P_{\text {wid }}}{{S S A P O P_{\text {mar }}+S S A P O P_{\text {wid }}}}, & m b=2 \text { (divorced) }
\end{array}\right.
$$

$\boldsymbol{p A S D} \boldsymbol{W}_{\boldsymbol{F I A}}$ represents the probability that the PAH was fully insured at death. For a given age of widow, $A W$, we assume that the age of her deceased husband, $A H$, ranges from $A W-6$ to $A W+12$ with a lower and upper bound of 60 and $95+$. Further, we assume that the more likely age of the husband is $A W+3$. For each age, we calculate $p A S D W_{F I A}$ as a weighted average of the portion of the Social Security area population who are fully insured at each possible age of the husband $\left(F I N S_{A H}\right)$. For example, for a widow age 70, we assume that the age of her husband is between 64 and 82, therefore we calculate the weighted average of the portion of the population who are fully insured males, applying the highest weight of 10 to age 73, and a linearly reduced weight to zero for each age above and below 73. We use the same concept for widow(er)s with the assumption that the age of his deceased wife ranges from $A H-12$ to $A H+6$, with a greater likelihood of her age being $A H-3$. Let $W E I G H T$ represent the specific weight applied to each potential age of the spouse.

$$
\begin{aligned}
& W E I G H T_{A H}=10-|A W+3-A H| \\
& W_{E I G H T}^{A W} \text { }=10-|A H-3-A W|
\end{aligned}
$$

$\boldsymbol{p} \boldsymbol{A S D} \boldsymbol{W}_{\boldsymbol{M B B}}$ represents the probability that the widow(er) is not receiving a young-spouse benefit for the care of a child. A widow(er) can receive a young-spouse benefit up to age 69 if he/she meets all other eligibility requirements. Since the minimum age requirement to receive a widow(er) benefit is 60, it is necessary to remove those receiving a young-spouse benefit $\left(Y S D W N^{a b}\right)$, where ab represents the 5 -year age bracket ${ }^{36}$. We assume a uniform breakdown to divide the age groups into single-age estimates.

$\boldsymbol{p A S D} \boldsymbol{W}_{\text {FIB }}$ represents the probability that the aged widow(er) is fully insured. For insured widow(er)s, $p A S D W_{F I B}$ is the portion of the Social Security area population that is fully insured (FINS) at each age, sex, and marital status. For uninsured widow(er)s, $p A S D W_{F I B}$ is simply one minus the probability for insured widow(er)s.

[^28]\[

p A S D W_{F I B}= $$
\begin{cases}\frac{F I N S}{{S S A P O P_{m b}}_{m b}}, & \text { in }=1 \\ 1-\frac{F I N S}{\operatorname{SSAPOP}_{m b}}, & \text { in }=2\end{cases}
$$
\]

$\boldsymbol{p} \boldsymbol{A S D} \boldsymbol{W}_{\boldsymbol{G P B}}$ represents the probability that the aged－widow（er）＇s benefits are not withheld or not offset totally because of receipt of a significant government pension based on earnin⿺廴⿻肀二灬咅 1 OR noncovered employment．According to the 1977 amendments，Social Security benefifs dre 1978 subject to reduction by up to two－thirds of non－covered government pension．GPWHLD represents the total number of widow（er）beneficiaries（for all ages）expected to receive a significant government pension．$r G P O A G E$ represents the ratio of the total for each given age． If a person is insured，this implies that he／she is eligible to receive Social Security benefits based on his／her own earnings regardless of a government pension．Therefore，we do not apply a factor．

$$
p A S D W_{G P B}=\left\{\begin{array}{c}
1 \\
r G P O A G E \times G P W H L D \\
A S D W_{P O P} \times p A S D W_{D E A} \times p A S D W_{F I A} \times p A S D W_{M B B} \times p A S D W_{F I B}
\end{array}, \quad \text { in }=2\right.
$$

$\boldsymbol{p A S D} \boldsymbol{W}_{\text {RES }}$ represents the probability that a widow（er），who is eligible to receive widow（er）＇s benefits，will actually receive benefits．In particular，for in＝1，this factor is equivalent to the probability that a widow（er）eligible to receive his／her own retired－worker benefits would instead apply for and receive widow（er）benefits．For all historical years，we calculate $p A S D W_{R E S}^{\text {year }}$ as the ratio of $A S D W N$ ，the actual number of widow（er）s，to the number of persons meeting all previously mentioned requirements by age，sex，insured status，and marital status．

$$
p A S D W_{R E S}^{\text {year }}=\frac{A S D W N}{A S D W_{P O P} \times p A S D W_{D E A} \times p A S D W_{F I A} \times p A S D W_{M B B} \times p A S D W_{F I B} \times p A S D W_{G P B}}, \quad \text { year }<\mathrm{TRYR},
$$

where TRYR is the Trustees Report year．
For each age，sex，insured status，and marital status，we use a least squares regression over the last ten years of historical data to determine a starting value in TRYR－1 for $p A S D W_{R E S}^{\text {year }}$ from which we project future values．In addition，for each sex，insured status，and marital status，we graduate the regressed values of $p A S D W_{R E S}^{T R Y R-1}$ over age using a weighted minimized third－ difference formula to produce ESTRES ${ }^{\text {ASDW }}$ ．ESTRES ${ }^{\text {ASDW }}$ are the preliminary estimates of $p A S D W_{R E S}^{\text {TRYR }+9}$ ，the values in the tenth year of the projection period．In addition，we apply adjustments by age group（60－64，65－69，70－74，75－79，80－84，85＋for insured；60－64，65＋for uninsured），$S R A D J^{A S D W}$ ，to the tenth year of the projection period in order to match the projections made by the Short－Range office．We linearly interpolate the values of $p A S D W_{R E S}^{\text {year }}$ for
intermediate years between $p A S D W_{R E S}^{\text {TRYR-1 }}$ and $p R W_{R E S}^{N, T R Y R+9}$ (equal to $\left.E S T R E S^{A S D W} * S R A D J^{A S D W}\right)$. After the $10^{\text {th }}$ year, we linearly grade these adjustment factors to one over the 10 years beyond the end of the short-range period, thus gradually eliminating the effect of the short-range adjustment factors, so that we ultimately return to long-range projections.

## Equation 3.3.2 - Retired Workers (RWN)

We project the numbers of retired-worker beneficiaries, along with all linkage factors, by age, sex, and marital status. Age ranges from 62 to 95+, and marital status includes single, married, widowed, and divorced ( $m s=1$ to 4 ). We calculate the projected number of retired-worker beneficiaries as follows:

$$
\begin{equation*}
R W N=R W_{P O P} \times p R W_{F I A} \times p R W_{D B B} \times p R W_{W B B} \times p R W_{R E S} \tag{3.3.2}
\end{equation*}
$$

$\boldsymbol{R} \boldsymbol{W}_{\boldsymbol{P O P}}$ represents the subset of the population from which we draw these beneficiaries. We set this equal to the Social Security area population $\left(S S A P O P_{m s}\right)$ for $m s=1$ to 4 .

$$
R W_{P O P}=S S A P O P_{m s}
$$

$\boldsymbol{p} \boldsymbol{R} \boldsymbol{W}_{\boldsymbol{F I A}}$ represents the probability that the primary account holder (PAH) is insured. We set this factor equal to the portion of the Social Security area population that is fully insured (FINS) for $\mathrm{ms}=1$ to 4 .

$$
p R W_{F I A}=\frac{F I N S}{R W_{P O P}}
$$

$\boldsymbol{p} \boldsymbol{R} \boldsymbol{W}_{\boldsymbol{D B B}}$ represents the probability that the PAH is not receiving a disabled-worker or disabilityconversion benefit. We set this factor equal to the portion of fully insured workers who are neither disabled-worker beneficiaries nor converted from disabled-worker beneficiaries (DIBCON). ASDWN represents the number of aged spouses of deceased workers.

$$
p R W_{D B B}=\left\{\begin{array}{cl}
1-\frac{D I B C O N}{R W_{P O P} \times p R W_{F I A}}, & m s=1-2 \\
\left.1-\frac{D I B C O N+A S D W N}{R W_{P O P} \times p R W_{F I A}}\right)^{\left(\frac{D I B C O N}{D I B C O N+A S D W N}\right)}, & m s=3-4
\end{array}\right.
$$

$\boldsymbol{p} \boldsymbol{R} \boldsymbol{W}_{\boldsymbol{W B B}}$ represents the probability that the PAH is not receiving a widow(er) benefit. We set this factor equal to the portion of fully insured workers that is not aged spouses of deceased workers.

$$
p R W_{W B B}\left\{\begin{array}{cc}
1, & m s=1-2 \\
\left(1-\frac{D I B C O N+A S D W N}{R W_{P O P} \times p R W_{F I A}}\right)^{\left(\frac{A S D W N}{D I B C O N+A S D W N}\right)}, & m s=3-4
\end{array}\right.
$$

$\boldsymbol{p} \boldsymbol{R} \boldsymbol{W}_{\boldsymbol{R E S}}{ }^{N, y e a r}$ represents the retirement prevalence rate, which is the probability that a fully insured worker not receiving disability or widow(er)'s benefits would receive retired-worker benefits as of the given age, $N$, for the given year. In order to estimate the future prevalence rate, the program first calculates the historical values of $p R W_{R E S}^{N, \text { year }}$.

For each historical year and sex, we calculate $p R W_{R E S}^{N, \text {,year }}$ as the ratio of $R W N$, the actual number of retired workers, to the number of persons meeting all previously mentioned requirements by age, sex, and marital status.

$$
p R W_{R E S}^{N, \text { year }}=\frac{R W N}{R W_{P O P} \times p R W_{F I A} \times p R W_{D B B} \times p R W_{W B B}}, N=62-95+\text { and year }<\text { TRYR }
$$

Historical prevalence rates at age 62 and labor force participation rates ( $L F P R^{\text {year }}$ ) at age 62, by sex, follow an inverse linear relationship over the historical period. We assume this relationship holds in the projection period, and therefore we used it to calculate $R E G P R^{\text {year }}$, the regressed prevalence rate based on the projected $L F P R^{\text {year }}$ at age 62 for each year and sex. Note that we calculate prevalence rates on a cohort basis ${ }^{37}$. The regression equation used to estimate the prevalence rates is:

$$
\begin{aligned}
& R E G P R^{\text {year }}=-0.98820 \times L F P R^{\text {year }}+0.92306 \text { for male with an } \mathrm{R}^{2} \text { value of } 0.89164 \text {, } \\
& \text { and } \\
& R E G P R^{\text {year }}=-0.84974 \times L F P R^{\text {year }}+0.79248 \text { for female with an } \mathrm{R}^{2} \text { value of } 0.86493
\end{aligned}
$$

We then set the future prevalence rate at age 62, $p R W_{R E S}^{62, \text { year }}$, equal to the sum of the regressed prevalence rate ( $R E G P R^{\text {year }}$ ) and $E R R O R$, the difference between the actual prevalence rate and the regressed prevalence rate in the most recent historical year, which we phase out linearly.

$$
p R W_{R E S}^{62, \text { year }}=R E G P R^{\text {year }}+(E R R O R) \times \max \left(0, \frac{T R Y R+9-\text { year }}{10}\right) \quad, N=62 \text { and year } \geq \text { TRYR- } 1
$$

To compute $p R W_{R E S}^{N, \text { year }}$ for ages 63 to 69 in the projection period, we must calculate several

[^29]preliminary variables. These include:

- MBAPIA $_{N}$, for $N=62,70$ (same for both sexes),
- $E S T P R_{N}^{\text {year }}$, for $N=63,69$ and by sex,
- $\operatorname{DIFFADJ}_{N}$, for $N=63,69$ and by sex,
- ESTPR2 $2_{N}^{\text {year }}$ for $N=63,69$ and by sex, and
- $E A R N_{N}$, for $N=65,69$ and by sex.
$M B A P I A_{N}$ is the ratio of the monthly benefit amount (MBA) to the primary insurance amount (PIA) at age $N$ and is calculated on a cohort basis for $N=62,70$. We base the calculation of $M B A P I A_{N}$ on the normal retirement age ( $N R A$ ), delayed retirement credits (DRC), and actuarial reduction factors, $A R F L E 3$ when the difference between $N R A$ and age at retirement is less than 3, and ARFGT3 when the difference is greater than 3 within each cohort. If a person retires after $N R A$, his/her benefits are increased by $D R C$ for each year the age exceeds $N R A$. If a person retires before $N R A$, his/her benefits are decreased by $A R F L E 3$ for each of the first three years that $N R A$ exceeds the age, and further decreased by $A R F G T 3$ for any remaining years.

$$
M B A P I A_{N}=\left\{\begin{array}{cl}
1+(N-N R A) \times D R C, & N \geq \text { NRA } \\
1-(N R A-N) \times A R F L E 3, & N R A-3 \leq N<\text { NRA } \\
1-(3 \times A R F L E 3-(N R A-3-N) \times A R F G T 3, & N<\text { NRA-3 }
\end{array}\right.
$$

$E S T P R_{N}{ }^{\text {year }}$, the estimated prevalence rate at age $N$, is then calculated as the prevalence rate at age 62 ( $p R W_{R E S}^{62, \text { year- }(N-62)}$ ) plus an estimate on the expected portion of the remaining probability $\left(1-p R W_{R E S}^{62, \text { year-(N-62) }), ~ t h a t ~ a ~ p o t e n t i a l ~ r e t i r e d ~ w o r k e r ~ w i l l ~ a c t u a l l y ~ r e t i r e ~ b y ~ t h a t ~ g i v e n ~ a g e . ~ W e ~}\right.$ base this estimate on $M B A P I A_{N}$, assuming that the retirement decision by a worker is totally and completely influenced by the expected change in the portion of PIA that is payable at each age relative to the potential change after the initial eligibility.
$E S T P R_{N}^{\text {vear }}=p R W_{R E S}^{62, \text { vear }-(N-62)}+\left(1-p R W_{R E S}^{62, \text { year }-(N-62)}\right) \times \frac{M B A P I A_{N}-M B A P I A_{62}}{M B A P I A_{70}-M B A P I A_{62}}, \quad N=63-69$
In the first year of the projection period, an adjustment $\left(D I F F A D J_{N}\right)$ is made which accounts for the difference between the actual and estimated prevalence rate at each age in the most recent historical years; For ages 63 and 64, the value used beginning in TRYR is the average of the last 5 years' differences between the actual and estimated PR. We hold this value constant throughout the projection period. For ages 65 to 69, we compute the difference between the actual and estimated prevalence rate for 1999, the last year prior to the elimination of the earnings test at NRA. We calculate the ultimate value of $D I F F A D J_{N}$, reached in 2010, as the average difference of the five years, 1995 through 1999. We linearly interpolate the values for $D I F F A D J_{N}$ for years 1999 through 2009.

$$
E S T P R 2_{N}=E S T P R_{N}+{D I F F A D J_{N}}
$$

For ages 65 to 69, we need another adjustment $\left(E A R N_{N}\right)$ to account for the scheduled increases in NRA and the elimination of the earnings test at NRA. This adjustment measures what portion of the remaining workers, who if the earnings test legislation in 2000 was not enacted would not have applied for benefits, decide to receive benefits and continue to work.

$$
p R W_{R E S}^{N, \text { year }}=E S T P R 2_{N}+\left(1-E S T P R 2_{N}\right) \times E A R N_{N}, N=65-69 \text { and year } \geq \mathrm{TRYR}
$$

For age 70, we assume that the values of the latest actual $p R W_{R E S}^{N, \text { year }}$ by sex change linearly to the ultimate level of 0.995 for male and 0.99 for female over the first 20 years of the projection period.

$$
p R W_{R E S}^{70, \text { year }}= \begin{cases}0.995-\left[0.995-p R W_{R E S}^{70, T R Y R-1}\right] \times \max \left(0, \frac{T R Y R+19-y e a r}{20}\right), & \begin{array}{l}
\text { sa }=1 \text { and } \\
\text { year } \geq \mathrm{TRYR}
\end{array} \\
0.99-\left[0.99-p R W_{R E S}^{70, \text { TRYR- } 1}\right] \times \max \left(0, \frac{\text { TRYR }+19-y e a r}{20}\right), & s a=2 \text { and } \\
\text { year } \geq \mathrm{TRYR}\end{cases}
$$

For ages 71 and older, we assume $p R W_{R E S}^{N, \text { year }}$ stays constant at the level when the age was 70 because there is no incentive to delay applying for benefits beyond age 70 .

$$
p R W_{R E S}^{N, \text { year }}=p R W_{R E S}^{70, \text { year }-(N-70)}, \text { for } N=71-95+\text { and year } \geq \text { TRYR }
$$

In addition, we apply adjustments by age group (62-64, 65-69) and sex, $S R A D J^{R W}$, to the tenth year of the projection period in order to match the projections made by the Short-Range office. We also apply these adjustments to $p R W_{R E S}^{N, \text { vear }}$ for all years after TRYR +9 . The values of $p R W_{R E S}^{N, \text {,year }}$ for intermediate years are linearly interpolated between $p R W_{R E S}^{N, T R Y R-1}$ and $p R W_{R E S}^{N, T R Y R+9}$.

For each age, retired workers are further broken down by age at entitlement, $A E$, by multiplying the number of retired workers at age $N$ by the ratio of the incidence rate at $A E$ ( $N-A E$ years prior) to the prevalence rate at age $N$.

$$
{ }_{A E}^{N} R W N^{\text {year }}={ }^{N} R W N^{\text {year }} \times \frac{{ }_{A E} I N C R A T E^{\text {year-( } N-A E)}}{p R W_{R E S}^{N, y e a r}}, A E \leq N
$$

where we calculate the incidence rate for a given $A E=N$ and year as the change in the prevalence rate at age $N$ to the prevalence rate at age $N$-1 in the previous year.

$$
{ }_{A E} I^{\prime} \text { NCRATE }{ }^{\text {year }}=p R\left\{\begin{array}{cl}
p R W_{R E S}^{N, \text { year }}, & \text { for } N=A E=62 \\
W_{R E S}^{N, \text { year }}-p R W_{R E S}^{N-1, \text { year }-1}, & \text { for } 63 \leq N=A E \leq 69 \\
1-p R W_{R E S}^{N-1, \text { year }-1}, & \text { for } N=A E=70
\end{array}\right.
$$

## Equation 3.3.3 - Aged Spouses of Retired Workers (ASRWN)

We project the number of aged spouses of retired workers, along with all linkage factors, by age, sex of the account holder $(s a=1,2)$, and marital status of the beneficiary. Age ranges from 62 to $95+$, and marital status includes married $(m b=1)$ and divorced ( $m b=2$ ). We calculate the projected number of aged spouses of retired workers as follows:

$$
\begin{align*}
A S R W N= & A S R W_{P O P} \times p A S R W_{D E A} \times p A S R W_{A G A} \times p A S R W_{F I A} \times p A S R W_{C P A} \times \\
& p A S R W_{M B B} \times p A S R W_{F I B} \times p A S R W_{G P B} \times p A S R W_{R E S} \tag{3.3.3}
\end{align*}
$$

$\boldsymbol{A S R} \boldsymbol{W}_{\boldsymbol{P O P}}$ represents the subset of the population from which these beneficiaries are drawn, and we set it equal to the Social Security area population $\left(S S A P O P_{m b}\right)$ for $m b=1,2$.

$$
A S R W_{P O P}=S S A P O P_{m b}
$$

$\boldsymbol{p A S R} \boldsymbol{W}_{\boldsymbol{D E A}}$ represents the probability that the PAH is not deceased. For the married population, We do not apply a factor. For the divorced population, we set the factor equal to the portion of the total married and widowed population who are married.

$$
p A S R W_{D E A}=\left\{\begin{array}{cl}
1, & m b=1 \text { (married) } \\
S S A P O P_{\text {mar }} \\
S S O P_{\text {mar }}+S S A P O P_{\text {wid }}
\end{array}, \quad m b=2\right. \text { (divorced) }
$$

$\boldsymbol{p A S R} \boldsymbol{W}_{\boldsymbol{A G A}}$ represents the probability that the PAH is of the required age, and we set it equal to the portion of the married population with a spouse (PAH) at least age 62 (MAR62PLUS).

$$
p A S R W_{A G A}=\frac{M A R 62 P L U S}{S S A P O P_{m a r}}
$$

$\boldsymbol{p A S R} \boldsymbol{W}_{\boldsymbol{F I A}}$ represents the probability that the PAH is fully insured, and we set it equal to the portion of married couples of the required age where the PAH is fully insured ( $F I_{-} P A H$ ). For example, when the program estimates the number of female aged spouse of retired workers, this factor will find the portion where their spouse, the male PAH, is fully insured.

$$
p A S R W_{F I A}=\frac{\sum\left[M A R 62 P L U S \times F I_{-} P A H\right]}{\sum M A R 62 P L U S}
$$

$\boldsymbol{p A S R} \boldsymbol{W}_{\boldsymbol{C P A}}$ represents the probability that the PAH is receiving benefits. We set this factor equal to the portion of eligible married couples where the PAH is receiving benefits (RETIRED). If the beneficiary is divorced, we do not apply a factor, since it is not required for the retired worker to be receiving benefits for the divorced aged spouse to receive benefits.

$\boldsymbol{p A S R} \boldsymbol{W}_{\boldsymbol{M B B}}$ represents the probability that the beneficiary is not receiving a young-spouse benefit. If the beneficiary is age 70 or older or if the beneficiary is divorced, we do not apply a factor. Otherwise, we set this factor equal to the portion of potentially eligible widow(er)s where the spouse of the PAH is not receiving a young-spouse benefit (YSRWN ${ }^{a b}$ ), where ab represents the 5 -year age group. ${ }^{38}$



[^30]$\boldsymbol{p A S R} \boldsymbol{W}_{\text {FIB }}$ represents the probability that the aged spouse is not fully insured, and is therefore not receiving a retired-worker benefit based on his/her own earnings. We set this factor equal to the portion of the married and divorced population that is not fully insured. For example, when the program estimates the number of female aged spouse of retired workers, this factor will find the portion of female beneficiaries that is fully insured.
$$
p A S R W_{F I B}=1-\frac{F I N S}{S S A P O P}, \quad m b=1-2
$$
$\boldsymbol{p A S R} \boldsymbol{W}_{\boldsymbol{G P B}}$ represents the probability that the aged-spouse's benefits are not withheld because of receipt of a significant government pension based on earnings in noncovered employment. $G P W H L D$ represents the total number of aged spouse of retired-worker beneficiaries (for all ages) expected to receive a significant government pension. $r G P O A G E$ represents the ratio of the total for each given age.
\[

p A S R W_{G P B}^{1-}=\left\{$$
\begin{array}{cl}
1, & \text { year } \leq 1978 \\
\frac{r G P O A G E \times G P W H L D}{} & \text { elsewhere }
\end{array}
$$\right.
\]

$\boldsymbol{p A S R} \boldsymbol{W}_{\boldsymbol{R E S}}$ represents the probability that a person who is eligible to receive aged-spouse benefits actually receive the benefits. For all historical years, we calculate $p A S R W_{R E S}^{\text {year }}$ as the ratio of $A S R W N$, the actual number of aged spouses receiving benefits, to the number of persons meeting all previously mentioned requirements by age, sex, and marital status.

$$
p A S R W_{R E S}^{\text {vear }}=\frac{A S R W N}{A S R W_{P O P} * p A S R W_{D E A} \times p A S R W_{A G A} \times p A S R W_{F I A} \times p A S R W_{C P A} \times p A S R W_{F I B}}, \quad y e a r<\mathrm{TRYR}
$$

For each age, sex , and marital status, we use a least squares regression over the last ten years of historical data to determine a starting value in TR-1 for $p A S R W_{R E S}^{\text {year }}$ from which we project future values. In addition, for each sex and marital status, we graduate the regressed values of $p A S R W_{R E S}^{\text {TRYR }-1}$ over age using a weighted minimized third-difference formula to compute ESTRES ${ }^{\text {ASRW }}$. ESTRES ${ }^{\text {ASRW }}$ are the preliminary estimates of $p A S R W_{R E S}^{\text {TRYR+9 }}$, the values in the tenth year of the projection period. For female spouses, we apply additional adjustments by age group (62-64, 65+), SRADJ ${ }^{A S R W}$, to the tenth year of the projection period in order to match the projections made by the Short-Range office. We linearly interpolate the values of $p A S R W_{\text {RES }}^{\text {year }}$ for intermediate years interpolated between $p A S R W_{R E S}^{\text {TRYR-1 }}$ and $p A S R W_{R E S}^{\text {TRYR }+9}$ (equal to $E S T R E S^{A S R W} \times S R A D J^{A S R W}$ ). After the $10^{\text {th }}$ year of the projection period, we linearly grade these adjustment factors to one over the 10 years beyond the end of the short-range period, thus gradually eliminating the effect of the short-range adjustment factors, so that we ultimately return to the long-range projections.

We project the number of disabled spouses of deceased workers, along with all linkage factors, by age, sex of the account holder ( $s a=1$ for male, $s a=2$ for female) and marital status. Age ranges from 50 to 69 , and marital status includes widowed ( $m b=1$ ) and divorced ( $m b=2$ ). We calculate the projected number of disabled spouses of deceased workers as follows:

$$
\begin{align*}
D S D W N= & D S D W_{P O P} \times p D S D W_{D E A} \times p D S D W_{F I A} \times  \tag{3.3.4}\\
& p D S D W_{S S B} \times p D S D W_{D E B} \times p D S D W_{R E S}
\end{align*}
$$

$\boldsymbol{D S D} \boldsymbol{W}_{\boldsymbol{P O P}}$ represents the subset of the population from which we draw these beneficiaries, and we set it equal to the Social Security area population $\left(S S A P O P_{m b}\right)$ for $m b=1,2$.

$$
D S D W_{P O P}=S S A P O P_{m b}
$$

pDSDW $\boldsymbol{W}_{\text {DEA }}$ represents the probability that the primary account holder is deceased. For the widowed population, we do not apply a factor. For the divorced population, we set this factor equal to the portion of the total widowed and married population that is widowed.

$$
p D S D W_{D E A}=\left\{\begin{array}{cl}
1, & m b=1 \text { (widowed) } \\
S S S A P O P_{\text {wid }}+S S A P O P_{\text {war }} & ,
\end{array}\right.
$$

$\boldsymbol{p D S D} \boldsymbol{W}_{\boldsymbol{F I A}}$ represents the probability that the PAH was fully insured at death. Given the age of the widow, $A W$, we assume that the age of her deceased husband, $A H$, ranges from $A W-6$ to $A W+12$ with a lower and upper bound of 50 and $95+$. Further, we assume that the more likely age of the husband is $A W+3$. For each age, we calculate $p D S D W_{F I A}$ as a weighted average of the portion of the Social Security area population that is fully insured (FINS), at each possible age of the husband. For example, if the widow is age 65, we assume that the age of the husband is between 59 and 77. Therefore, when we calculate the weighted average of the portion of the population who are fully insured males, we apply the highest weight of ten to age 68 and linearly reduce the weight to zero for each age above and below 68 . We use the same concept for widow(er)s with the assumption that the age of his deceased wife ranges from $A H-12$ to $A H+6$, with a greater likelihood of her age being $A H-3$. Let $W E I G H T$ represent the specific weight applied to each age.

$$
\begin{aligned}
& W E I G H T_{A H}=10-|A W+3-A H| \\
& W E I G H T_{A W}=10-|A H-3-A W|
\end{aligned}
$$

$p D S D W_{S S B}$ represents the probability that the spouse is indeed disabled. We set this factor equal to the disability prevalence rates (DISPREV) by age and sex received from the DISABILITY subprocess.

$$
p D S D W_{S S B}=D I S P R E V
$$

$\boldsymbol{p D S D} \boldsymbol{W}_{\text {DEB }}$ represents the probability that the disabled spouse is not dually eligible for another type of benefit. We assume this factor remains at a constant level by sex.

$$
p D S D W_{D E B}= \begin{cases}\oint .85, & s a=1 \\ 0.06, & s a=2\end{cases}
$$

$\boldsymbol{p} \boldsymbol{D S D} \boldsymbol{W}_{\boldsymbol{R E S}}$ represents the probability that a person who is eligible to receive disabled-spouse benefits actually receive the benefits. For all historical years, we calculate $p D S D W_{\text {RES }}^{\text {vear }}$ as the ratio of $D S D W N$, the actual number of disabled spouses of deceased workers receiving benefits, to the number of persons meeting all previously mentioned requirements by age, sex, and marital status.

$$
p D S D W_{R E S}^{\text {vear }}=\frac{D S D W N}{D S D W_{P O P} \times p D S D W_{D E A} \times p D S D W_{F I A} \times p D S D W_{D E B}}, \quad \text { year }<\text { TRYR }
$$

For ages 50 to 64, and each sex, and marital status, we use a least squares regression over the last ten years of historical data to determine a starting value in TR-1 for $p D S D W_{R E S}^{\text {year }}$ from which we project future values. In addition, for each sex and marital status, we graduate the regressed
values of $p D S D W_{\text {RES }}^{\text {TRYR-1 }}$ over age using a weighted minimized third-difference formula to compute ESTRES ${ }^{\text {DSDW }}$. ESTRES ${ }^{D S D W}$ are the preliminary estimates of $p D S D W_{R E S}^{\text {TRYR+9 }}$, the values in the tenth year of the projection period. For female disabled spouses, we apply an adjustment, $S R A D J^{D S D W}$, to the tenth year of the projection period in order to match the projections made by the Short-Range office. We exponentially interpolate the values of $p D S D W_{R E S}^{\text {year }}$ for intermediate years between $p D S D W_{R E S}^{\text {TRYR-1 }}$ and $p D S D W_{R E S}^{\text {TRYR+9 }}$ (equal to $E S T R E S^{D S D W} \times S R A D J^{D S D W}$ ). After the $10^{\text {th }}$ year of the projection period, we linearly grade the adjustment factors to one over the 10 years beyond the end of the short-range period, thus gradually eliminating the effect of the shortrange adjustment factors, so that we ultimately return to the long-range projections.

For the projection period, for ages 65 to 69 where age is less than NRA, $p D S D W_{R E S}^{\text {year }}$ is equal to $p D S D W_{\text {Res }}^{\text {year }}$ at age 64 times an adjustment that accounts for the additional ages as NRA changes.

$$
\begin{aligned}
& \text { 1, } \quad \text { NRA } \geq \text { age } \int+1 \\
& F A C T O R_{\text {age }}=\left\{\begin{array}{l}
\text { NRA }- \text { age }, \quad \text { age }<\text { NRA }<\text { age }+1
\end{array}\right. \\
& p D S D W_{R E S}^{\text {year }}=p D S D W_{R E S}^{\text {year, } 64} \times\left(\frac{p D S D W_{R E S}^{\text {vear } 64}}{p D S D W_{\text {RES }}^{\text {year } 63}}\right)^{\text {(age-64) }} \times F A C T O R_{\text {age }}, \quad \begin{array}{l}
\text { age }=65-69 \text { and } \\
\text { age }<\text { NRA }
\end{array}
\end{aligned}
$$

## Equation 3.3.5-6 - Minor Children of Retired and Deceased Workers (MCRWN and MCDWN )

We project the number of minor children of retired workers, $M C R W N$, by age of the minor ( $\mathrm{am}=$ 0 to 17) and sex of the account holder ( $s a=1$ for male, $s a=2$ for female). We calculate this by multiplying the number of minor children in the most recent historical year, BASE_MCRWN, by two factors that reflect changes in (1) the number of children in the population, and (2) the proportion of retired workers to the population, at ages where a worker is most likely to have a minor child.

$$
\begin{equation*}
M C R W N_{s a, a m}^{\text {year }}=\text { BASE }_{-} M C R W N_{s a, a m}^{\text {tRYR-1 }} \times P O P R A T I O_{s a, a m}^{\text {year }} \times \frac{R W_{-} R_{A T I O}^{s a, 62-71}}{P O P_{-} R A T I O_{s a, 20-71}^{\text {year }}} \tag{3.3.5}
\end{equation*}
$$

We apply an adjustment, $S R A D J^{M C R W}$, to the tenth year of the projection period in order to match the projections made by the Short-Range office. We also apply these adjustments to $M C R W N_{s a, a m}^{y e a r}$ for all years after TRYR +9 . We linearly interpolate the values of $M C R W N_{s a, a m}^{y e a r}$ for intermediate years interpolated between $M C R W N_{s a, a m}^{T R Y R-1}$ and $M C R W N_{s a, a m}^{T R Y R+9} \times S R A D J^{M C R W}$.

We project the number of minor children of deceased workers, along with all linkage factors, by age of the minor ( $\underline{a m}=0$ to 17) and sex of the account holder ( $s a=1$ for male, $s a=2$ for
female). We calculate it as follows:

$$
\begin{equation*}
M C D W N=M C D W_{P O P} \times p M C D W_{D E A} \times p M C D W_{F I A} \times p M C D W_{R E S} \tag{3.3.6}
\end{equation*}
$$

$\boldsymbol{M C D W}_{\boldsymbol{P O P}}$ represents the subset of the population from which we draw these beneficiaries, and we set it equal to the Social Security area population (SSAPOP).

$$
M C D W_{P O P}=S S A P O P
$$

$\boldsymbol{p} M C D W_{D E A}$ represents the status of the parent ( PAH ). This is set equal to the portion of the minor population where at least one parent is deceased. CHI_DEA represents the number of children having at least one deceased parent.

$$
p M C D W_{D E A}=\frac{C H I_{-} D E A}{M C D W_{P O P}}
$$

$\boldsymbol{p M C D} \boldsymbol{W}_{\text {FIA }}$ represents the probability that the parent ( PAH ) is fully insured. We set this equal to the portion of the population aged $25+a m$ to $35+a m$ where the PAH is fully insured (FI_PAH).

$$
p M C D W_{F I A}=\frac{\sum_{25+a m}^{35+a m}\left[S S A P O P \times F I_{-} P A H\right]}{\sum_{25+a m}^{35+a m} S S A P O P}
$$

$\boldsymbol{p} M C D W_{\text {RES }}$ represents the probability that a child who is eligible to receive minor-child benefits actually receive the benefits. For all historical years, we calculate $p M C D W_{R E S}^{\text {year }}$ as the ratio of $M C D W N$, the actual number of minor children of deceased workers receiving benefits, to the number of number of persons meeting all previously mentioned requirements by age and sex of the parent.

$$
p M C D W_{R E S}^{\text {year }}=\frac{M C D W N}{M C D W_{P O P} \times p M C D W_{D E A} \times p M C D W_{F I A}}, \quad \text { year }<\mathrm{TRYR}
$$

For each age and sex of parent, we use a least squares regression over the last ten years of historical data to determine a starting value in TR-1 for $p M C D W_{R E S}^{\text {year }}$ from which we project future values. We apply an adjustment, $S R A D J^{M C D W}$, to the tenth year of the projection period in order to match the projections made by the Short-Range office. We linearly interpolate the values of $p M C D W_{R E S}^{\text {year }}$ for intermediate years between the regressed values for $p M C D W_{R E S}^{T R Y R-1}$ and $p M C D W_{R E S}^{T R Y R+9} \times S R A D J^{M C D W}$. After the $10^{\text {th }}$ year of the projection period, we linearly grade
the adjustment factors to one over the 10 years beyond the end of the short-range period, thus gradually eliminating the effect of the short-range adjustment factors, so that we ultimately return to the long-range projections.

## Equation 3.3.7-8 - Student Children of Retired and Deceased Workers (SCRWN and SCDWN)

We project the number of student children of retired and deceased workers, along with all linkage factors, by age of the student ( $a s=18$ to 19 ) and sex of the account holder ( $s a=1$ for male, $s a=2$ for female). We calculate the projected number of student children of retired and deceased workers as follows:

$$
\begin{align*}
S C R W N= & S C R W_{P O P} \times p S C R W_{D E A} \times p S C R W_{A G A} \times p S C R W_{F I A} \times  \tag{3.3.7}\\
& p S C R W_{C P A} \times p S C R W_{S S B} \times p S C R W_{R E S} \\
S C D W N= & S C D W_{P O P} \times p S C D W_{D E A} \times p S C D W_{A G A} \times p S C D W_{F I A} \times  \tag{3.3.8}\\
& p S C D W_{C P A} \times p S C D W_{S S B} \times p S C D W_{R E S}
\end{align*}
$$

$\boldsymbol{S C R} \boldsymbol{W}_{P O P}$ and $\boldsymbol{S C D} \boldsymbol{W}_{P O P}$ represent the subset of the population from which these beneficiaries are drawn, and we set them equal to the Social Security area population (SSAPOP).

$$
S C R W_{P O P}=S C D W_{P O P}=S S A P O P
$$

$\boldsymbol{p S C R} \boldsymbol{W}_{\boldsymbol{D E A}}$ and $\boldsymbol{p S C D} \boldsymbol{W}_{\boldsymbol{D E A}}$ represent the status of the parent (PAH). For student children of retired workers, we set this equal to the proportion of the subset of the population where neither parents are deceased. For student children of deceased workers, we set this equal to the proportion of the subset of the population where at least one parent is deceased. CHI_DEA represents the number of student children having at least one deceased parent.

$$
\begin{gathered}
p S C R W_{D E A}=1-\frac{C H I_{-} D E A}{S C R W_{P O P}} \\
p S C D W_{D E A}=\frac{C H I_{-} D E A}{S C R W_{P O P}}
\end{gathered}
$$

$\boldsymbol{p S C R} \boldsymbol{W}_{\boldsymbol{A G A}}$ and $\boldsymbol{p S C D} \boldsymbol{W}_{\boldsymbol{A G A}}$ represent the probability that the PAH is age 62 or older. For student children of retired workers, we set this equal to the proportion of the student population that has one parent age 62 or older, CHI_62+ $^{\text {. For student children of deceased workers, we set }}$ the factor equal to one.

$$
\begin{gathered}
p S C R W_{A G A}=\frac{C H I_{-} 62+}{S C R W_{P O P}} \\
p S C D W_{A G A}=1
\end{gathered}
$$

$\boldsymbol{p S C R} \boldsymbol{W}_{\text {FIA }}$ and $\boldsymbol{p S C D} \boldsymbol{W}_{\boldsymbol{F I A}}$ represent the probability that the PAH is fully insured. For student children of retired workers, we set this equal to the portion of the population aged 62 to $64+$ as where the PAH is fully insured (FI_PAH). For student children of deceased workers, we calculate the factor similarly with the population being aged $25+$ as to $35+$ as.

$$
\begin{aligned}
& p S C R W_{F I A}=\frac{\sum_{62}^{64+a s}\left[S S A P O P \times F I_{-} P A H\right]}{\sum_{62}^{64+a s} S S A P O P} \\
& p S C D W_{F I A}=
\end{aligned}
$$

$\boldsymbol{p S C R} \boldsymbol{W}_{\boldsymbol{C P A}}$ and $\boldsymbol{p S C D} \boldsymbol{W}_{\boldsymbol{C P A}}$ represent the probability that the PAH is receiving benefits. For student children of retired workers, we set this factor equal to the portion of the population aged 62 to 64+as where the PAH is receiving benefits (RETIRED). For student children of deceased workers, we set this factor equal to one.

$$
\begin{gathered}
p S C R W_{C P A}=\frac{\sum_{62}^{64+a s}\left[S S A P O P \times F I_{-} P A H \times R E T I R E D\right]}{\sum_{62}^{64+a s}\left[S S A P O P \times F I_{-} P A H\right]} \\
p S C D W_{C P A}=1
\end{gathered}
$$

$p S C R W_{S S \boldsymbol{B}}$ and $\boldsymbol{p S C D} \boldsymbol{W}_{S S \boldsymbol{B}}$ represent the probability that the child is indeed attending school (full-time elementary or secondary school). This factor is dependent upon the age of the child, and we calculate it as follows.

$$
p S C R W_{S S B}=p S C D W_{S S B}= \begin{cases}\frac{1}{a s-16}, & \text { year } \leq 1981 \\ \frac{0.5}{a s-16}, & \text { year }>1981\end{cases}
$$

$\boldsymbol{p S C R} \boldsymbol{W}_{\boldsymbol{R E S}}$ and $\boldsymbol{p S C D} \boldsymbol{W}_{\boldsymbol{R E S}}$ represent the probability that a child who is eligible to receive student-child benefits actually receive the benefits. For all historical years, we calculate $p S C R W_{\text {RES }}^{\text {year }}$ and $p S C D W_{\text {RES }}^{\text {year }}$ as the ratio of $S C R W N$ and $S C D W N$, the actual number of student children receiving benefits, to the number of number of persons meeting all previously mentioned requirements by age and sex of the parent.

$$
\begin{array}{ll}
p S C R W_{R E S}^{\text {year }}=\frac{S C R W N}{S C R W_{P O P} \times p S C R W_{D E A} \times p S C R W_{A G A} \times p S C R W_{F I A} \times p S C R W_{C P A} \times p S C R W_{S S B}}, & \text { year }<\mathrm{TRYR} \\
p S C D W_{R E S}^{\text {year }}=\frac{S C D W N}{S C D W_{P O P} \times p S C D W_{D E A} \times p S C D W_{A G A} \times p S C D W_{F I A} \times p S C D W_{C P A} \times p S C D W_{S S B}} & \text { year }<\text { TRYR }
\end{array}
$$

For each age and sex of parent, we use a least squares regression over the last ten years of historical data to determine a starting value in TR-1 for $p S C R W_{R E S}^{\text {year }}$ from which we project future values. We apply an adjustment, $S R A D J^{\text {SCRW }}$, to the tenth year of the projection period in order to match the projections made by the Short-Range office. We linearly interpolate the values of $p S C R W_{\text {ReS }}^{\text {year }}$ for intermediate years between the regressed values for $p S C R W_{R E S}^{\text {TRYR-1 }}$ and $p S C R W_{R E S}^{T R Y R+9} \times S R A D J^{S C R W}$. After the $10^{\text {th }}$ year of the projection period, we linearly grade the adjustment factors to one over the 10 years beyond the end of the short-range period, thus gradually eliminating the effect of the short-range adjustment factors, so that we ultimately return to the long-range projections. We calculate the values of $p S C D W_{\text {RES }}^{\text {year }}$ similarly.

Equation 3.3.9-10 - Disabled Adult Children of Retired and Deceased Workers (DCRWN and DCDWN)

We project the number of disabled adult children of retired and deceased workers, along with all linkage factors, by age group of the disabled adult child ( $a d=1-10$ ) and sex of the account holder ( $s a=1$ for male, $s a=2$ for female). The age groups are 18-19, 20-24, $\ldots, 55-59,60+$. We calculate the projected number of disabled adult children of retired and deceased workers as follows:

$$
\begin{align*}
D C R W N= & D C R W_{P O P} \times p D C R W_{A G A} \times p D C R W_{D E A} \times p D C R W_{F I A}  \tag{3.3.9}\\
& \times p D C R W_{C P A} \times p D C R W_{S S B} \times p D C R W_{R E S} \\
D C D W N= & D C D W_{P O P} \times p D C D W_{A G A} \times p D C D W_{D E A} \times p D C D W_{F I A}  \tag{3.3.10}\\
& \times p D C D W_{C P A} \times p D C D W_{S S B} \times p D C D W_{R E S}
\end{align*}
$$

We calculate all factors similarly to those for student children with the exception of the following.
$\boldsymbol{p D C R} \boldsymbol{W}_{\boldsymbol{D E A}}$ is set equal to the proportion of the married and widowed population who are married (for ages of the parent that are reasonable based on the given age range of the disabled child). We calculate $p D C D W_{D E A}$ similarly for disabled children of deceased workers.

$$
\begin{gathered}
p D C R W_{D E A}= \begin{cases}\frac{S S A P O P_{\operatorname{mar}}}{S S A P O P_{\text {mar }}+S S A P O P_{\text {wid }}}, & a d=1-9 \\
\frac{0.25 \times S S A P O P_{\text {mar }}}{S S A P O P_{\text {mar }}+S S A P O P_{\text {wid }}}, & a d=10\end{cases} \\
p D C D W_{D E A}= \begin{cases}\frac{S S A P O P_{\text {wid }}}{S S A P O P_{\text {mar }}+S S A P O P_{\text {wid }}}, & a d=1-9 \\
\frac{0.25 \times S S A P O P_{\text {wid }}}{S S A P O P_{\text {mar }}+S S A P O P_{\text {wid }}}+0.75, & a d=10\end{cases}
\end{gathered}
$$

$p D C R W_{S S \boldsymbol{B}}$ and $\boldsymbol{p} \boldsymbol{D C D} \boldsymbol{W}_{S S \boldsymbol{B}}$ represent the probability that the adult child is indeed disabled. DCPREM is the preliminary calculation of this factor and we assume it to remain constant. For the projection period, for ad=6-10, we set $p D C R W_{S S B}$ and $p D C D W_{S S B}$ equal to the preliminary factor, plus an adjustment which accounts for the year.

$$
\begin{gathered}
D C P R E M=\left\{\begin{aligned}
0.012, & \text { ad }=1-2 \\
0.009, & \text { ad }=3 \\
0.007, & \text { ad }=4 \\
0.006, & \text { ad }=5 \\
0.005, & \text { ad }=6 \\
0.004, & \text { ad }=7-10
\end{aligned}\right. \\
\begin{array}{l}
p D C R W_{S S B} \\
=p D C D W_{S B B}=
\end{array} \quad\left\{\begin{aligned}
& \text { min }[0.005, D C P R E M+0.0001 \times(\text { year }- \text { TRYR })], \text { ad }=7-10 \text { and } \\
& \text { year }>\text { TRYR }+1
\end{aligned}\right. \\
D C P R E M,
\end{gathered}
$$

$p D C R W_{\text {RES }}$ and $\boldsymbol{p D C D} W_{\text {RES }}$ represent the probability that a child who is eligible to receive disabled-child benefits actually receive the benefits. For all historical years, we calculate $p D C R W_{R E S}^{\text {year }}$ and $p D C D W_{R E S}^{\text {year }}$ as the ratio of $D C R W N$ and $D C D W N$, the actual number of disabled children receiving benefits, to the number of number of persons meeting all previously
mentioned requirements by age and sex of the parent.

$$
\begin{aligned}
& p D C R W_{R E S}^{\text {year }}=\frac{D C R W N}{D C R W_{P O P} * p D C R W_{D E A} \times p D C R W_{A G A} \times p D C R W_{F I A} \times p D C R W_{C P A} \times p D C R W_{S S B}}, \\
& p D C D W_{R E S}^{\text {year }}=\frac{D C D W N}{D C D W_{P O P} * p D C D W_{D E A} \times p D C D W_{A G A} \times p D C D W_{F I A} \times p D C D W_{C P A} \times p D C D W_{S S B}}, y e a r<\text { TRYR } \\
& \quad \text { year }<\text { TRYR }
\end{aligned}
$$

We apply an adjustment, $S R A D J^{D C R W}$, to the tenth year of the projection period in order to match the projections made by the Short-Range office. We linearly interpolate the values of $p D C R W_{R E S}^{\text {year }}$ for intermediate years between $p D C R W_{R E S}^{\text {TRYR-1 }}$ and $p D C R W_{R E S}^{\text {TRYR+9 }} \times S R A D J^{\text {DCRW }}$. After the $10^{\text {th }}$ year of the projection period, we linearly grade the adjustment factors to one over the 10 years beyond the end of the short-range period, thus gradually eliminating the effect of the short-range adjustment factors, so that we ultimately return to the long-range projections. We calculate the values of $p D C D W_{R E S}^{\text {year }}$ similarly.

## Equation 3.3.11-12 - Young Spouses of Retired and Deceased Workers (YSRWN and YSDWN)

We project the number of young spouses of retired and deceased-workers, along with all linkage factors, by age group ( $a b=1-10$ ) of the young spouse and sex of the account holder ( $s a=1$ for male, $s a=2$ for female). We also project young spouses of deceased workers by marital status of the young spouse ( $m b=1$ for widowed and $m b=2$ for divorced). The age groups are under 25, 25-29 ..., 65-69. We calculate the projected number of young spouses of retired and deceased-workers as follows:

$$
\begin{gather*}
Y S R W N=Y S R W_{P O P} \times p Y S R W_{A G A} \times p Y S R W_{E C B} \times p Y S R W_{F S B} \times p Y S R W_{R E S}  \tag{3.3.11}\\
Y S D W N=Y S D W_{P O P} \times p Y S D W_{D E A} \times p Y S D W_{E C B} \times p Y S D W_{F S B} \times p Y S D W_{R M B} \times p Y S D W_{R E S} \tag{3.3.12}
\end{gather*}
$$

$\boldsymbol{Y S R} \boldsymbol{W}_{P O P}$ and $\boldsymbol{Y S D} \boldsymbol{W}_{P O P}$ represent the subset of the population from which we draw these beneficiaries. We set $Y S R W_{P O P}$ equal to the married Social Security area population $\left(S S A P O P_{m a r}\right)$ and we set $Y S D W_{P O P}$ equal to $S S A P O P_{m b}$ for $m b=1-2$.

$$
\begin{aligned}
& Y S R W_{P O P}=S S A P O P_{m a r} \\
& Y S D W_{P O P}=S S A P O P_{m b}
\end{aligned}
$$

$\boldsymbol{p Y S D} \boldsymbol{W}_{\text {DEA }}$ represent the probability that the PAH is deceased. For $\mathrm{mb}=1$, we do not apply any factor. For $\mathrm{mb}=2$, we set this factor equal to the portion of young spouses that is widowed.

$$
p Y S D W_{D E A}=\left\{\begin{array}{cl}
1, & m b=1 \text { (widowed) } \\
S S A P O P_{\text {wid }}+S S A P O P_{\text {mar }} &
\end{array}\right.
$$

$\boldsymbol{p Y S R} \boldsymbol{W}_{\boldsymbol{A G A}}$ and represent the probability that the PAH is of the required age. We set $p Y S R W_{A G A}$ equal to the portion of the married population who has an aged spouse (AGSP).

$$
p Y S R W_{A G A}=\frac{A G S P}{Y S R W_{P O P}}
$$

$\boldsymbol{p Y S R} \boldsymbol{W}_{\boldsymbol{E C B}}$ and $\boldsymbol{p Y S D} \boldsymbol{W}_{\boldsymbol{E C B}}$ represent the probability that the young spouse has an entitled child in their care. We set $p Y S R W_{E C B}$ equal to the portion of persons meeting the previously mentioned requirements who have a minor or disabled adult child in their care. We set $p Y S D W_{E C B}$, by marital status, equal to the portion of persons meeting the previously mentioned requirements who have a minor or disabled adult child in their care. $M C R W N^{a b}$ and $D C R W N^{a b}$ represent the total number of minor and disabled adult children of retired workers where the other parent (young spouse) is in the age bracket ab.

$$
\begin{gathered}
p Y S R W_{E C B}^{a b}=\frac{M C R W N^{a b}+D C R W N^{a b}}{Y S R W_{P O T} \times p Y S R W_{A G A}} \\
p Y S D W_{E C B}^{m b}=\frac{\left(M C D W N^{a b}+D C D W N^{a b}\right) \times\left[\frac{Y S D W_{P O P}^{m b} \times p Y S D W_{D E A}^{m b} \times p Y S D W_{A G A}^{m b}}{Y S D W_{P O P}^{\text {total }} \times p Y S D W_{D E A}^{\text {total }} \times p Y S D W_{A G A}^{\text {total }}}\right]}{Y S D W_{P O P} \times p Y S D W_{D E A}}
\end{gathered}
$$

$\boldsymbol{p} \boldsymbol{Y S R} \boldsymbol{W}_{\boldsymbol{F S B}}$ and $\boldsymbol{p} \boldsymbol{Y S D} \boldsymbol{W}_{\boldsymbol{F S} \boldsymbol{B}}$ represent the probability that the young spouse is not already receiving benefits based on another child in their care. We set this factor equal to one divided by the number of children in the average family $\left(A S O F_{a b}\right)$ for the given age bracket of the spouse. For young spouses of retired workers, we do not apply a factor for $\mathrm{sa}=2$.

$$
p Y S R W_{F S B}=\left\{\begin{array}{cc}
1 & s a=1 \\
1, & s a=2
\end{array}\right.
$$

$$
p Y S D W_{F S B}=\frac{1}{A S O F_{a b}}
$$

$\boldsymbol{p Y S D} \boldsymbol{W}_{\boldsymbol{R M B}}$ represents the probability that the spouse is not remarried. We assume this factor remains constant at 0.600 .

$$
p Y S D W_{R M B}=0.600
$$

$\mathbf{p Y S R}_{\text {RES }}$ and $\mathbf{p Y S D} \mathbf{W}_{\text {RES }}$ represent the probability that a person who is eligible to receive young-spouse benefits actually receive the benefits. For all historical years, we calculate $p Y S R W_{R E S}^{\text {year }}$ as the ratio of $Y S R W N$, the actual number of young spouses of retired workers receiving benefits, to the number of persons meeting all previously mentioned requirements by age, sex, and marital status. We calculate $p Y S D W_{\text {RES }}^{\text {year }}$ similarly, using the number of young spouses of deceased workers.

$$
\begin{gathered}
p Y S R W_{R E S}=\frac{Y S R W N}{Y S R W_{P O P} \times p Y S R W_{A G A} \times p Y S R W_{E C B} \times p Y S R W_{F S B}}, y e a r<\mathrm{TRYR} \\
p Y S D W_{R E S}=\frac{Y S D W N}{Y S D W_{P O P} \times p Y S D W_{D E A} \times p Y S D W_{E C B} \times p Y S D W_{F S B} \times p Y S D W_{R M B}}, y e a r<\mathrm{TRYR}
\end{gathered}
$$

For each age, sex , and marital status, we use a least squares regression over the last ten years of historical data to determine a starting value in TR-1 for $p Y S R W_{R E S}^{\text {vear }}$. In addition, for each sex and marital status we graduate the regressed values of $p Y S R W_{R E S}^{\text {TRYR-1 }}$ over age using a weighted minimized third-difference formula to compute ESTRES ${ }^{Y S R W}$. ESTRES ${ }^{Y S R W}$ are the preliminary estimates of $p Y S R W_{\text {RES }}^{\text {TRY }+9}$, the values in the tenth year of the projection period. For female
 order to match the projections made by the Short-Range office. We exponentially interpolate the values of $p Y S R W_{\text {RES }}^{\text {year }}$ for intermediate years between $p Y S R W_{R E S}^{\text {TRYR-1 }}$ and $p Y S R W_{R E S}^{\text {TRYR }+9}$ (equal to $\left.E S T R E S^{Y S R W} \times S R A D J^{Y S R W}\right)$. After the $10^{\text {th }}$ year of the projection period, we linearly grade the adjustment factors to one over the 10 years beyond the end of the short-range period, thus gradually eliminating the effect of the short-range adjustment factors, so that we ultimately return to the long-range projections. We calculate the values of $p Y S D W_{R E S}^{\text {year }}$ similarly.

## Equation 3.3.13 - Number of Deaths of Insured Workers (LUMSUM ${ }_{a b}$ )

We project the number of deaths of insured workers by sex and 5-year age group ( $a b=1-14$ ). Age groups include 20-24, 25-29, .., 80-84, 85+. We calculate EXPOSURE ${ }_{a b}$, the estimated
number of lump-sum payments paid during the year for age group $a b$, as the number of total deaths during the year times the probability that the deceased was fully insured and has a surviving spouse or child. We calculate BASE as the ratio of the actual total amount of lumpsum death payments paid in TRYR-1 to the estimated total amount of lump-sum payments paid in TRYR-1. We then calculate $L U M S U M_{a b}$ for each year in the projection period.

$$
\begin{equation*}
L^{2} M S U M_{a b}=E X P O S U R E_{a b} \times B A S E \tag{3.3.13}
\end{equation*}
$$

## Appendix 3.3-1: Glossary

$A B$ : age group of the beneficiary
$A D:$ age of the disabled child
AGSP: married population where at least one spouse is age 62 or older
$\boldsymbol{A M}$ : age of the minor child
ARFGT3: actuarial reduction factor for ages more than 3 years below normal retirement age
ARFLE3: actuarial reduction factor for ages less than 3 years below normal retirement age
$A S$ : age of the student child
ASDW: aged spouse of deceased worker by linkage factor, age (60-95+), sex of the account holder, marital status (widowed, divorced) and insured status (insured, uninsured). Linkage factors are:
$A S D W_{P O P}$ : population of potential aged spouse of retired workers
$p A S D W_{D E A}$ : probability that the primary account holder ( PAH ) is deceased
$p A S D W_{F I A}$ : probability that the PAH was fully insured at death
$p A S D W_{M B B}$ : probability that the widow(er) is not receiving a young-spouse benefit for the care of a child
$p A S D W_{F I B}$ : probability that the aged widow(er) is fully insured
$p A S D W_{G P B}$ : probability that the aged-widow(er)'s benefits are not withheld or offset totally because of receipt of a significant government pension based on earnings in noncovered employment
$p A S D W_{\text {RES }}$ : probability that a widow(er) eligible to receive his/her own retired-worker benefits would instead apply for and receive widow(er) benefits
$\boldsymbol{A S D W N}$ : final number of aged spouse of deceased workers (product of all linkage factors)
ASOF: average number of children in a family, by age group (under 25, 25-29 ..., 60-64)
ASRW: aged spouse of retired worker by linkage factor, age (62-95+), sex of the account
holder, and marital status of the beneficiary (married, divorced). Linkage factors are:
$A S R W_{P O P}$ : population of potential aged spouse of retired worker beneficiaries
$p A S R W_{\text {DEA }}$ : probability that the primary account holder (PAH) is not deceased
$p A S R W_{A G A}$ : probability that the PAH is of the required age
$p A S R W_{F I A}$ : probability that the PAH is fully insured
$p A S R W_{C P A}$ : probability that the PAH is receiving benefits
$p A S R W_{M B B}$ : probability that the beneficiary is not receiving a young-spouse benefit
$p A S R W_{F I B}$ : probability that the aged spouse is not fully insured
$p A S R W_{G P B}$ : probability that the aged-spouse's benefits are not withheld because of receipt of a significant government pension based on earnings in noncovered employment
$p A S R W_{\text {RES }}$ : probability that a person who is eligible to receive aged-spouse benefits actually receive the benefits
$\boldsymbol{A S R W N}$ : final number of aged spouse of retired workers (product of all linkage factors)

AH: age of husband
$A W$ : age of wife
BASE: ratio of actual to estimated total amount of lump-sum death payments paid in TRYR-1
CHI_62+: number of children having at least one parent aged 62 or older
CHI_DEA: number of children having at least one deceased parent
CON: number of persons converted from disabled-worker beneficiaries
DCDW: disabled child of deceased workers by linkage factor, age group of the child (18-19, 20-
$24, \ldots, 55-59,60+$ ) and sex of the account holder. Linkage factors are same as SCDW.
$D C D W_{P O P}$ : population of potential disabled children
$p D C D W_{A G A}$ : probability that the PAH is age 62 or older
$p D C D W_{D E A}$ : probability that the parent is either retired or deceased
$p D C D W_{F I A}$ : probability that the PAH is fully insured
$p D C D W_{\text {CPA }}$ : probability that the PAH is receiving benefits
$p D C D W_{S S B}$ : probability that the child is indeed disabled
$p D C D W_{\text {RES }}$ : probability that a child who is eligible to receive disabled-child benefits actually receive the benefits
DCDWN: final number of disabled children of deceased workers (product of all linkage factors)
DCPREM: preliminary calculation of the probability that a child is disabled, by age
DCRW: disabled child of retired workers by linkage factor, age group of the child (18-19, 20$24, \ldots, 55-59,60+$ ) and sex of the account holder. Linkage factors are same as those for DCDW.
DCRWN: final number of disabled children of retired workers (product of all linkage factors)
DIB: number of disabled-worker beneficiaries
DIFFADJ: adjustment that accounts for the difference between the actual and estimated prevalence rate at each age in the most recent historical years
DISPREV: disability prevalence rate by age and sex
DRC: delayed retirement credit
DSDW: disabled spouse of deceased worker by linkage factor, age (50-69), sex of the account holder, and marital status (widowed, divorced). Linkage factors are:
$D S D W_{P O P}$ : population of potential beneficiaries
$p D S D W_{D E A}$ : probability that the primary account holder ( PAH ) is deceased
$p D S D W_{F I A}$ : probability that the PAH was fully insured at death
$p D S D W_{S S B}: \quad$ probability that the spouse is indeed disabled
$p D S D W_{D E B}$ : probability that the disabled spouse is not receiving another type of benefit
$p D S D W_{\text {RES }}$ : probability that a person who is eligible to receive disabled-spouse benefits actually receive the benefits
DSDWN: final number of disabled spouse of deceased workers (product of all linkage factors)
ERROR: actual prevalence rate minus the regressed prevalence rate in the most recent historical year
ESTPR: preliminary estimate of the prevalence rate for retired workers
ESTPR2: secondary estimate of the prevalence rate for retired workers

ESTRES: preliminary estimate of the RES factor for the tenth year of the projection period EXPOSURE: estimated number of lump-sum payments by age group (20-24, 25-29, .., 80-84, 85+)
FACTOR: adjustment for calculation of MBB factor of aged spouse of deceased worker FINS: portion of the SSA population that is fully insured
FI_PAH: portion of married population where one spouse is fully insured
$\boldsymbol{F P}$ : status of the parent (retired, deceased)
GPOAGE: portion, by age, of the total beneficiaries expected to receive a significant government pension
GPWHLD: total number of beneficiaries (for all ages) expected to receive a significant government pension
IN: insured status of the beneficiary
LFPR: labor force participation rates for age 62, by sex
LUMSUM: number of deaths of insured workers by sex and age group (20-24,...,80-84,85+)
MAR62PLUS: number of couples where both husband and wife are age 62 and over
MS: marital status of the primary account holder
MB: marital status of the beneficiary
MBAPIA: ratio of the monthly benefit amount (MBA) to the primary insurance amount (PIA) by age (62-70) and sex
MCDW: minor children of deceased workers by linkage factor, age of the child (0-17) and sex of the account holder. Linkage factors are:
$M C D W_{P O P}$ : population of potential minor children
$p M C D W_{D E A}$ : probability that the parent is either retired or deceased
$p M C D W_{F I A}$ : probability that the PAH is fully insured
$p M C D W_{\text {RES }}$ : probability that a child who is eligible to receive minor-child benefits actually receive the benefits
MCDWN: final number of minor children of deceased workers (product of all linkage factors) MCRW: minor children of retired workers by linkage factor, age of the child (0-17) and sex of the account holder.
MCRWN: final number of minor children of retired workers (product of all linkage factors)
NRA: normal retirement age
PAH: primary account holder
REGPR: regressed prevalence rate for retired workers
RETIRED: number of retired workers receiving benefits
$\boldsymbol{R W}$ : retired workers by linkage factor, age (62-95+), sex, and marital status (single, married, widowed, divorced). Linkage factors are:
$R W_{P O P}$ : population of potential retired-worker beneficiaries
$p R W_{F A}$ : probability that the primary account holder ( PAH ) is insured
$p R W_{D B B}$ : probability that the PAH is not receiving a disabled-worker benefit
$p R W_{\text {WBB }}$ : probability that the PAH is not receiving a widow(er) benefit
$p R W_{\text {RES }}$ : retirement prevalence rate; probability that a fully insured worker (not receiving
disability or widow(er)'s benefits) would receive a retired-worker benefit
$\boldsymbol{R W N}$ : final number of retired workers (product of all linkage factors)
SA: sex of the account holder
$\boldsymbol{S C D W}$ : student children of deceased workers by linkage factor, age of the student (18-21) and sex of the account holder. Linkage factors are:
$S C D W_{P O P}$ : population of potential student children
$p S C D W_{\text {DEA }}$ : probability that the parent is either retired or deceased
$p S C D W_{A G A}$ : probability that the PAH is age 62 or older
$p S C D W_{F I A}$ : probability that the PAH is fully insured
$p S C D W_{C P A}$ : probability that the PAH is receiving benefits
$p S C D W_{S B B}$ : probability that the child is indeed attending school
$p S C D W_{R E S}$ : probability that a child who is eligible to receive student-child benefits actually receive the benefits
SCDWN: final number of student children of deceased workers (product of all linkage factors)
SCRW: student children of retired workers by linkage factor, age of the student (18-21) and sex of the account holder. Linkage factors are same as SCDW.
$\boldsymbol{S C R W N}$ : final number of student children of retired workers (product of all linkage factors)
SRADJ: adjustment to match short-range projections in $10^{\text {th }}$ year of projection period
SSAPOP: Social Security area population by age (0:100), sex, and marital status (single, married, widowed, divorced)
$\boldsymbol{S X} \boldsymbol{X}$ : sex of the beneficiary
TRYR: first year of the projection period
WEIGHT: estimated probability applied to each possible age of the spouse, given the age of the primary account holder
YSDW: young spouse of deceased worker by linkage factor, age group (under 25, 25-29,...,6569), sex of the account holder and marital status (widowed, divorced). Linkage factors are:
$Y S D W_{P O P}$ : population of potential young spouse of deceased workers
$p Y S D W_{D E A}$ : probability that the primary account holder ( PAH ) is of the required age
$p Y S D W_{E C B}$ : probability that the young spouse has an entitled child in their care
$p Y S D W_{F S B}$ : probability that the young spouse is not already receiving benefits based on another child in their care
$p Y S D W_{R M B}$ : probability that the young spouse is not remarried $p Y S D W_{\text {RES }}$ : probability that a person who is eligible to receive young-spouse benefits actually receive the benefits
YSDWN: final number of young spouse of deceased workers (product of all linkage factors)
YSRW: young spouse of retired worker by linkage factor, age group (under 25, 25-29,...,65-69) and sex of the account holder. Linkage factors are:
YSRW $W_{P O P}$ : population of potential young spouse of retired workers
$p Y S R W_{A G A}$ : probability that the primary account holder (PAH) is of the required age
$p Y S R W_{E C B}$ : probability that the young spouse has an entitled child in their care
$p Y S R W_{F S B}$ : probability that the young spouse is not already receiving benefits based on another child in their care
$p Y S R W_{\text {RES }}$ : probability that a person who is eligible to receive young-spouse benefits actually receive the benefits
YSRWN: final number of young spouse of retired workers (product of all linkage factors)

## Process 4:

# Trust Fund Operations \& Actuarial Status 

## 4. Trust Fund Operations and Actuarial Status

OCACT uses the Trust Fund Operations and Actuarial Status Process to project (1) the annual flow of income from payroll taxes, taxation of benefits, and interest on assets in the trust fund and (2) the annual flow of cost from benefit payments, administration of the program, and net railroad interchange. The annual flows are projected for each year of the 75-year projection period. In addition, this subprocess produces annual and summarized values to help assess the financial status of the Social Security program.

The Trust Fund Operations and Actuarial Status Process is composed of three subprocesses: TAXATION OF BENEFITS, AWARDS, and COST. As a rough overview, TAXATION OF BENEFITS projects, for each year during the 75-year projection period, the amount of income from taxation of benefits as a percent of benefits paid. AWARDS projects information needed to determine the benefit levels of newly awarded retired workers and disabled workers by age and sex. COST uses information from the AWARDS and TAXATION OF BENEFITS subprocesses, as well as information from other processes, to project the annual flow of income and cost to the trust funds. In addition, COST produces annual and summarized measures of the financial status of the Social Security program, including selected summarized information used to prepare the Statement of Social Insurance.

### 4.1. TAXATION OF BENEFITS

## 4.1.a. Overview

The 1983 Social Security Act specifies including up to 50 percent of the Social Security benefits to tax return filer's adjusted gross income (AGI) for tax liability if tax return filer's adjusted gross income plus half of his (or her) Social Security benefits is above the specified income threshold amount of $\$ 25,000$ as a single filer (or $\$ 32,000$ as a joint filer). Subsequently, the 1993 OBRA (Omnibus Budget Reconciliation Act) provided for taxation of up to 85 percent if the tax return filer's adjusted gross income plus half of his (or her) Social Security benefits is above the specified income threshold amount of $\$ 34,000$ as a single filer (or $\$ 44,000$ as a joint filer).

The proceeds from taxing up to 50 percent of the OASDI benefits, as a result of the 1983 Act, are credited to the OASI and DI Trust Funds, while additional taxes on the OASDI benefits, as a result of the 1993 Act, are credited to the HI Trust Fund.

Income to the trust funds from such taxation is estimated by using ratios of taxes on benefits to benefits for the OASI and DI programs separately. These ratios, called "RTBs", are applied to the projected OASI and DI benefit amounts to estimate tax revenues to the OASI and DI Trust Funds.

For the short range period (first 10 years of the projection), the Cost sub-process (4.3) uses OTA (Office of Tax Analysis)'s projected estimates for (1) the percent of benefits taxable and (2) the average marginal tax rates applicable to those taxable OASI and DI benefits. The multiplication of (1) and (2) produces the projected RTBs under the 1983 Act (up to 50 percent of benefits taxable).

For the long range period ( $11^{\text {th }}$ through $75^{\text {th }}$ year of the projection period), the RTB ratios for OASI benefits and those for DI benefits under the 1983 Act are computed with the following formula for each projection year.
$\begin{aligned} \operatorname{RTB}(\mathrm{yr})= & \mathrm{RTB}(\operatorname{tryr}+9) *\{\operatorname{AWI}(\operatorname{tryr}+9) / \operatorname{AWI}(\mathrm{yr})\} \wedge \mathrm{P}+ \\ & \mathrm{RTB}(\text { ultimate }) *\{1-\mathrm{AWI}(\text { tryr }+9) / \mathrm{AWI}(\mathrm{yr})\} \wedge \mathrm{P},\end{aligned}$
where
tryr $=$ first year of the projection period (year of the Trustees Report)
RTB(ultimate) = ratio of taxes on benefits to benefits assuming income threshold amounts equal zero.

AWI $=$ SSA average wage index series
$P=$ exponential parameter for a trend curve line.

Finally, the Cost sub-process (4.3) applies the projected RTB ratios to its own estimates of the projected OASI and DI benefit payments to produce taxation of benefit revenues to the OASI and DI Trust Funds.

## 4.1.b. Input Data

## OCACT Data

## Economics--process 2

- Projected SSA wage index series by year, updated yearly
- Projected COLAs and average wage index levels under the intermediate assumptions of the prior Trustees Report


## Beneficiaries--process 3

- Projected OASI beneficiaries by age and sex under the intermediate assumptions of the prior Trustees Report
- Projected DI beneficiaries by age and sex under the intermediate assumptions of the prior Trustees Report

Trust Fund Operations--process 4

- Aggregate OASI and DI benefit ratios (as a ratio of total OASDI benefits) under the intermediate assumptions of the prior Trustees Report

Other

- Aggregate OASDI benefit payments for calendar year ni-3


## Other input Data

- OTA's projected percent of benefits taxable and average marginal tax rates by type of benefit (OASI and DI) for the short range period (updated yearly).
- OTA's ultimate ratios of taxes on benefits to benefits (i.e., with income thresholds, assumed equal to 0). Such ultimate ratios are provided on a combined OASDI benefit basis, and are expected to be updated periodically based on OTA's update.
- Current Population Survey (CPS) data for year ni-3, where ni = initial projection year, e.g., 2012 for the 2012 Trustees Report
- Marginal personal income tax brackets for year ni-3
- Marginal personal income tax rates for year ni-3
- General filing requirement amounts for personal income tax purposes for year ni3
- Ratios of taxable income to adjusted gross income by income level (IRS data) for tax year ni-3
- Treasury's aggregate taxable benefit amount (IRS data) for tax year ni-3
- OTA's estimated taxes on benefits for the OASDI and HI Trust Funds for tax year ni-3


## 4.1.c. Development of Output

For the short range period, the Cost sub-process (4.3) uses OTA's projected RTBs for OASI and DI benefits under the 1983 Act, to project taxation of benefit revenues to the OASI and DI Trust Funds.

For the long range period, formula 4.1.1 computes projected ratios of taxes on OASI benefits to OASI benefits and projected ratios of taxes on DI benefits to DI benefits under the 1983 Act (up to 50 percent of benefits taxable). This formula essentially provides more weight to the ultimate RTB ratios as time progresses, using the ratio of AWI ( $10^{\text {th }}$ year) to AWI (projection year) as the "weight." Additionally, an exponential parameter P value to the AWI "weights" is set judgmentally such that the estimate continues the short range trend into the transitional $11^{\text {th }}$ through $20^{\text {th }}$ projection years before it approaches the ultimate RTB ratio. For the RTB ratios for up to 50 percent of benefits taxable, the P values were set at 1.00 and 0.99 to project smooth transitional RTB ratios for OASI and DI benefits, respectively.

The ultimate RTB ratios used in the projection are based on OTA's ultimate ratios, reduced by about 5 percent. ${ }^{39}$ The 5 percent reduction reflects estimates of the effect of the higher proportion of "old elderly" beneficiaries in the 2090 OASDI beneficiary population distribution relative to the 2020 OASDI beneficiary population distribution, due to improved mortality.

For the 2012 Trustees Report, the ultimate RTB ratios for up to 50 percent of OASI and DI benefits taxable were set at 0.058 and 0.029 , respectively.

[^31]Lastly, the Cost sub-process (4.3) applies these projected RTB ratios to projected OASI and DI benefit payments to develop estimated taxation of benefit revenues to the OASI and DI Trust Funds.

### 4.2. AWARDS

Each year over 2 million workers begin receiving either retired-worker or disabled-worker benefits. The monthly benefits for these new awards are based on their primary insurance amount (PIA). The PIA is computed using the average indexed monthly earnings (AIME) and the PIA benefit formula as specified in the 1977 amendments.. The AIME depends on the worker's number of computation years, $Y$, and the earnings in each year. For retired-worker beneficiaries who have attained or will attain age 62 in 1991 or later, $Y=35$.

The AWARDS subprocess (AWARDS) selects records from a 10 percent sample of newly entitled worker beneficiaries obtained from the Master Beneficiary Record (MBR). ${ }^{40}$ The selected sample, referred to as "sample", contains 234,018 beneficiary records, and each record, r , includes a worker's history of taxable earnings under the OASDI program as well as additional information such as sex, birth date, month of initial entitlement, and type of benefit awarded. To estimate the benefit levels of future newly entitled worker beneficiaries, AWARDS modifies the earnings records in the sample to reflect the expected work histories and earnings levels of future beneficiaries (equation 4.2.1). After the modifications, AWARDS computes an AIME for each record in the future sample of beneficiaries (equation 4.2.2). AWARDS subdivides the AIME value of each record into bend point subintervals ${ }^{41}$ (equation 4.2.3). As input to the Cost subprocess, the AIME values are used to calculate aggregate percentages of AIME in each bend point subinterval for each age at entitlement, sex and trust fund (equation 4.2.4). Equations 4.2.1 through 4.2.4 outline the overall structure and solution sequence. The subscript $n$ refers to the bend point subinterval and $r$ refers to the sample record.

$$
\begin{align*}
\text { Projected Earnings } & =\text { Projected Earnings }(\cdot)  \tag{4.2.1}\\
\text { AIME }(r) & =\frac{\sum \text { Highest } Y \text { Indexed Earnings }(r)}{Y * 12}  \tag{4.2.2}\\
\operatorname{AIME}_{n}(r) & =\operatorname{AIME}_{n}(\cdot)  \tag{4.2.3}\\
\operatorname{PAP}_{n} & =\frac{\sum_{r} \operatorname{AIME}_{n}(r)}{\sum_{r} \mathrm{bp}_{n}} \tag{4.2.4}
\end{align*}
$$

where $\mathrm{bp}_{n}$ is the length of the $n$th bend point subinterval,

[^32]Y is the number of computation years, and
$\operatorname{AIME}_{n}(\mathrm{r})$ is the AIME amount contained within the $n$th interval for record r .

## 4.2.b. Input Data

## Long-Range OCACT Projection Data

## Demography-

- Social Security area population by sex and age.
- From 1951 to 2090
- Updated annually


## Economics -

- Covered workers by sex and age--all.
- From 1951 to 2090
- Updated annually
- Covered workers by sex and age-with earnings posted to the Master Earnings File (MEF) only. - used with CWHS data to project future earnings levels
- From 1951 to 2090
- Updated annually
- Average Wage Index (AWI), projected values.
- From 2011 to 2090
- Updated annually
- Historical Average Taxable Earnings (ATE) —with earnings posted to the Master Earnings File (MEF) only - used with CWHS data to project future earnings levels
- From 1951 to 2010 (only 2009-2010 data used in SOSI)
- Updated annually
- Projected Average Taxable Earnings (ATE) -with earnings posted to the Master Earnings File (MEF) only - used with CWHS data to project future earnings levels
- From 2011 to 2090
- Updated annually
- Projected Covered Worker Rate (for validation)
- From 2011 to 2090
- Updated annually
- COLA (Cost Of Living Adjustment) - not used in SOSI
- From 2011 to 2090
- Updated annually
- Projected Wage Base (to reflect relative changes in relative taxable maximum levels over time)
- From 1951 to 2015
- Updated annually


## Other input data

- $10 \%$ Awards Sample from the MBR and Master Earnings File
- Newly entitled OASI / DI beneficiaries, whose initial entitlement year was 2007, and are in current pay status as of Dec. 2007, 2008 or 2009.
- SSN
- Type of benefit
- Type of claim (retirement or disability)
- Sex
- Date of birth
- Date of initial entitlement
- Date of disability onset
- PIA amount
- Type of dual entitlement
- Dual entitlement status code
- PIFC
- LAF
- Eligibility year
- Trust fund
- Earnings histories for each worker from 1951 to 2006
- Generally updated annually, pending validation of the sample
- Total taxable earnings and number of workers with taxable earnings by age, sex, and year from the 2009 Continuous Work History Sample (CWHS).
- From 1951 to 2009
- Updated annually
- AWI, Average Wage Index, historical values
- From 1951 to 2010
- Data obtained from OCACT internet site.
- Updated annually
- Wage base
- From 1951 to 2012
- Data obtained from OCACT internet site.
- Updated annually
- COLA, cost of living adjustment - not used in SOSI
- From 1975 to 2011
- Data obtained from OCACT internet site.
- Updated annually
- Amount of earnings needed to earn one quarter of coverage
- From 1951 to 2012
- 1978-2012 data obtained from OCACT internet site. 1951-1977 values estimated by applying projection methodology backwards from 1978.
- Updated annually
- Windfall Elimination Provision (WEP) factors, the \% of sample cases affected by the WEP which will no longer be affected by the WEP, by sex and projection year
- From 2011 to 2090
- Data obtained from OCACT internal calculations
- Updated annually
- PIA bend points - not used in SOSI (expect for 1979 bend points)
- From 1979 to 2012
- Data obtained from OCACT internet site.
- Updated annually


## 4.2.c. Development of Output

All equations described below are projected separately for the OASI and DI program.

## Equation 4.2.1 - Projected Earnings

In order to estimate future benefit levels, the work histories and earnings levels in the current sample must be modified to represent those for a sample of worker beneficiaries who are newly entitled in future years. Three distinct modifications are made to the earnings records. For each future year, changes are made to the earnings records in order to reflect:

- Changes in Wage Bases.

For some years, the projected wage base (contribution and benefit base), on an AWI discounted basis, is higher than the historical wage base. Therefore, the taxable earnings of future beneficiaries may need to include covered earnings above the reported historical wage base. Thus, for each record with reported taxable earnings at the wage base in a given year, AWARDS imputes his/her covered earnings.

- Changes in Covered Worker Rates.

Adjustments are made to work histories to be consistent with the projected changes in the economy-wide covered worker rates. Economy-wide covered worker rates are defined as the ratio of covered workers (from Economics subprocess) to the Social Security area population (from Demography subprocess).

- Earnings Experience in the $C W H S^{42}$.

Earning levels are modified to capture the changes to date that are reflected in the average taxable earnings reported in the CWHS by age and sex and the changes expected in the future.

[^33]
## Change in Wage Bases

The earnings posted in the sample are limited by the historical wage base (contribution and benefit base). Prior to 1975, the maximum annual amount of earnings on which OASDI taxes were paid was determined by ad hoc legislation. After 1974, however, the annual maximum level was legislated to be determined automatically, based on the increase in the Social Security Average Wage Index (AWI). Prior to these automatic wage base increases, a relatively large portion of workers earned amounts above the base. Additional legislation raising the annual maximum taxable amount occurred in 1979, 1980, and 1981 to improve the financial future of the OASDI Trust Funds. In addition, the AWI used in the automatic calculation of the annual taxable maximum was modified in the early 1990s to include deferred compensation amounts.

Therefore, for each record in the sample with earnings at the wage base, AWARDS imputes covered earnings above the historical wage base in order to reflect higher maximum taxable amounts imposed on future newly entitled beneficiaries. Please refer to appendix 4.2-1 at the end of this subprocess for details of this imputation. Then, these projected covered earnings are compared to the wage base values that would be in effect for future samples of retired workers (using the "projected wage base" input file) to determine the taxable earnings to use in the benefit calculations.

## Change in Covered Worker Rates

The sample's covered worker rate by age group and sex is defined as the ratio of (1) the number of those beneficiaries with covered earnings in the sample to (2) the total number of beneficiaries in the sample. For both males and females, the work histories are modified to reflect changes in the covered worker rates that would apply to a future sample of beneficiaries. These changes in the covered worker rates are based on changes in the economy-wide covered worker rates. The economy-wide covered worker rate is defined for an age-sex group in a particular period which represents a future sample cohort as the ratio of (1) the number of workers in the economy in this group that have some earnings in this period, to (2) the total midyear population in this group in this period. Economy-wide covered worker rates are calculated separately for each age-sex group and each historical and projected calendar year based on input data from the Economics and Demography subprocesses.

In projecting sample covered worker rates, examination is done of the change in economy-wide covered worker rates, by age group, between the "base period" (representing individuals retiring in the sample year) and the "projection period" (representing individuals retiring in a year later than the sample year). Details of how this change is used to estimate the change in a covered worker rate for retired workers from a current period in the sample to a future period are given below for male and female, respectively. For additional explanation of this calculation, refer to examples 1.1 and 1.2 in appendix 4.2-2 of this subprocess.

## MALE

- $\quad$ The ratio of (1) the absolute difference in the economy-wide male covered worker rate between the two periods to (2) the potential difference in the economy-wide male worker rate in the sample year (i.e., 1 -economy-wide covered worker rate), multiplied by
- $\quad$ The corresponding potential difference in the sample's male covered worker rates (i.e,. 1 - sample male covered worker rate)).


## FEMALE

- $\quad$ The ratio of (1) the absolute difference in the economy-wide female covered worker rate between the two periods to (2) the difference between the projected sample male covered worker rate and the economy-wide female worker rate in the sample year, is multiplied by
- $\quad$ The corresponding difference between the projected sample male covered worker rate and the sample female covered worker rate.

This presentation above presumes that economy-wide covered rates increase over time, which is very common for females but not always true for males, based on 2012 TR data. The calculation of the change in covered worker rate changes if there is a reduction in relevant economy-wide covered worker rates. Example 1.3 gives an example of the calculations done for males if economy-wide covered worker rates decline.

A similar procedure exists for projecting sample covered worker rates for disabled workers. See Example 1.4 for an example, for male disabled workers.

Once the covered worker rates for the future sample of beneficiaries are determined, modifications to work histories of the sample to attain these rates are generally done by randomly removing or adding earnings. ${ }^{43}$ For males, the procedure is to select records randomly. However, for females, an additional selection criterion is included in order to achieve a distribution of the number of years of earnings for retired female beneficiaries. Female records with 10 or fewer years of earnings are not modified. A distribution limit is set for those female workers with 11 to 25 total years of career earnings within the projection year. This distributional limit changes each projected year. In the first year after the sample year, the distribution limit for females is equal to the male distribution plus $97 \%$ of the difference between the initial male and female distributions within the sample. In each subsequent year, the percentage decreases by three percent until it reaches $0 \%$. Thus, the females' years of earnings distribution for those with 11 to 25 years of earnings is adjusted to approach that of the males.

[^34]If a record is selected for adding earnings in a particular year, the amount of earnings added is based on the career earnings pattern of the selected record. When earnings are added to a record, AWARDS calculates the ratio of (1) the record's Average Indexed Earnings, AIE ${ }^{44}$, to (2) the AIE of a hypothetical worker, $w$, whose year of birth and sex are the same as the record and whose annual earnings are set equal to average taxable earnings. For this purpose, average taxable earnings are determined by averaging the earnings over all records in the sample with the same sex and year of birth. Then, the amount of earnings ${ }^{45}$ in year $t$ that is added to the record is

$$
\operatorname{Earnings}(r, t)={ }^{\operatorname{Pre}} \operatorname{ATE}_{\mathrm{f}}(\text { sex, } t) * \frac{\operatorname{AIE}(r)}{\operatorname{AIE}(w)},
$$

where ${ }^{\text {Pre }} \mathrm{ATE}_{\mathrm{f}}($ sex, $t)$ is the average taxable earnings in year $t$, for those in the sample with the same sex as that of the record, for those retiring in year $f$.

For additional explanation of this calculation, refer to example 2 in appendix 4.2-2 of this subprocess.

## Earnings Experience in the CWHS

For historical years beginning with 1951, AWARDS uses average taxable earnings by age and sex ( $\mathrm{cwHs}^{\prime} \mathrm{ATE}_{\mathrm{as}}$ ) and numbers of covered workers by age and sex ( $\mathrm{cwhs} \mathrm{CW}_{\mathrm{as}}$ ) as tabulated from the most recent CWHS file ${ }^{46}$. AWARDS then projects these values from the base year (the last historical year in the CWHS file). Projections are made for each year after the base year through the end of the 75 -year projection period using projected economy-wide number of covered workers by age and sex and annual average taxable earnings (ATE) from the Economics process ${ }^{47}$.

After the base year, the numbers of covered workers by age and sex (cwhsCW ${ }_{\mathrm{as}}$ ) are projected by applying the annual growth rates by age and sex in the numbers of economy-wide covered workers produced by the Economics subprocess. In addition, cwhs $\mathrm{ATE}_{\text {as }}$ are projected. The first step is to determine preliminary ${ }_{\text {cwhs }} \mathrm{ATE}^{\text {as }}$ by using the annual growth rate in the total economy-wide ATE. A further multiplicative adjustment is made to each ${ }_{\mathrm{CWHS}} \mathrm{ATE}^{\prime}{ }_{\text {as }}$ such that the resulting aggregate average taxable earnings, determined by combining the projected values of $\mathrm{cwhs}^{2} \mathrm{CW}_{\text {as }}$ and $\mathrm{cwhs} \mathrm{ATE}_{\text {as }}$ for the year, produces the same growth rate as the growth in total taxable earnings from the Economic process.

[^35]For additional explanation of this calculation, refer to example 3 in appendix 4.2-2 of this subprocess.

The historical and projected $\mathrm{cwhs} \mathrm{ATE}_{\text {as }}$ are then used to change the earnings histories of the sample of newly entitled beneficiaries so that the earnings represent newly entitled beneficiaries in future years. For a given sex and age group, the expected annual average taxable earnings of a future sample is denoted as ATE $_{f}{ }^{\prime}$. ATE $_{f}^{\prime}$ is computed by using the comparable changes ${ }^{48}$ in the cwhs $^{\text {ATE }}$ as. In addition, the annual average taxable earnings of the sample (after adjustments to the records' earnings levels for changes in wage bases and covered worker rates) are computed by sex and age group and denoted as ATE $_{\mathrm{f}}$. The difference between these values is the amount by which the average annual earnings levels are adjusted. Let

$$
\delta(t)=\mathrm{ATE}_{\mathrm{f}}{ }^{\prime}-\mathrm{ATE}_{\mathrm{f}},
$$

for each year $t$. Denote the total workers in the sample in year t as TotalWorkers $(t)$. Then, $(\delta(t)$ * TotalWorkers $(t)$ ) is the total amount of earnings which the model distributes for a given sex and age group in a way so that the average taxable earnings after distribution is $\mathrm{ATE}_{\mathrm{f}}{ }^{\prime}$.

For additional explanation of the calculation $\delta(t)$, refer to example 4 in the appendix 4.2-2.
When $\delta(t)$ is negative, earnings for the year are decreased. To achieve ATE $_{f}$ for the given sex and age-group, AWARDS multiplies CoveredEarnings $(r, t)$ by a ratio,

$$
\operatorname{ratio}(t)=1+\frac{\delta(t)}{\operatorname{ATE}_{\mathrm{f}}(t)}+\alpha
$$

The term, $\alpha$, is an additional adjustment necessary because covered earnings above the wage base, have either no effect or only a partial effect on modifying ATE $_{f}$ to ATE $_{f}$ '. In the 2012 Trustees Report, $\alpha$ was set equal to -0.07 for both sexes and trust funds (OASI and DI).

When $\delta(t)$ is positive, earnings for the year are increased. However, the method of increasing earnings differs between disabled beneficiaries (DIBs) and retired worker beneficiaries (OABs).

For earnings increases for DIBs, the adjustment is done similarly to the adjustment for when $\delta(t)$ is negative, where the ratio is multiplied by covered earnings to raise each record's earnings for year $t$. If the resulting value exceeds the future wage base in year $t$, taxable earnings would equal the wage base. Hence, again, a constant $\alpha$ is added to account for the fact that increasing covered earnings which are greater or equal to the future wage base has no effect and covered earnings

[^36]slightly below the future wage base have only a partial effect on modifying ATEf' to ATE $_{f}$. For the 2012 Trustees Report, $\alpha=0.02$ for females and $\alpha=0.03$ for males.

However, when earnings for the year are increased for OABs, the ratio takes into account that among OABs, there are many more workers with earnings near or above the future wage base. In order to account for this, AWARDS first computes $z$, such that

$$
z(t)=\frac{\delta(t) *\left(\sum_{\mathrm{n}=1}^{20} \operatorname{NumberWorkers}(n, t)\right)+\frac{\delta(t)}{h(t)} *\left(\sum_{\mathrm{n}=\mathrm{j}}^{20} \operatorname{NumberWorkers}(n, t)\right) * \frac{\delta(t)}{2}}{\sum_{n=1}^{20} \operatorname{NumberWorkers}(n, t)},
$$

where
(1) NumberWorkers( $n, t$ ) equals the number of workers whose earnings in year $t$ fall within the $n$th interval, that is the number of workers whose earnings are greater or equal to IntervalLength $(t)^{*}(n-1)$ and less than IntervalLength $(t)^{*} n$. For this calculation, IntervalLength $(t)=\frac{\text { WageBase }(\mathrm{t})}{20}$. Also, TotalWorkers $(\mathrm{t})=\sum_{n=1}^{20}$ NumberWorkers $(n, t)$.
(2) $j(t)$ is the interval, such that $j(t)=20-\left\lfloor\frac{\delta(t)}{\text { IntervalLength }(t)}\right\rfloor$.
(3) $h(t)$ is the dollar amount from interval $j(t)$ to the wage base,

$$
h(t)=\operatorname{IntervaLength}(\mathrm{t}) *(21-j(t)) .
$$

Now the covered earnings of OAB records are multiplied by the ratio

$$
\operatorname{ratio}(\mathrm{t})=1+\frac{\mathrm{z}(\mathrm{t})}{\operatorname{ATE}_{\mathrm{f}}(t)}+\alpha,
$$

where $\alpha=0.03$ for males and $\alpha=0.02$ for females.
As AWARDS applies ratio $(t)$ to Earnings $(r, t)$ by each record, it makes sure that the total earnings adjustment in a year does not exceed $\delta(t) *$ TotalWorkers $(t)$.

For additional explanation of this calculation, refer to example 5 in appendix 4.2-1 of this subprocess.

## Equation 4.2.2 - Average Indexed Monthly Earnings (AIME)

Step 1: Index Earnings

To compute an individual's AIME, all taxable earnings after 1950 are considered. First, the earnings are indexed up to the index year, $i$, which is defined as the year of attaining age 60 for retired-worker beneficiaries (eligible for benefits at age 62). For disabled-worker beneficiaries, $i$ is set to be 2 years before the sample year . Thus,

$$
\text { IndexedEar nings }(\mathrm{r}, \mathrm{t})= \begin{cases}\operatorname{Earnings}(r, t) * \frac{\text { AverageWage }(i)}{\text { AverageWage }(t)}, & \text { if } \mathrm{t}<i \\ \operatorname{Earnings}(\mathrm{r}, \mathrm{t}), & \text { if } \mathrm{t} \geq i\end{cases}
$$

## Step 2: Determine Computation Years

For each record, the number of computation years, Y, is determined. For a retired-worker beneficiary in the sample, Y is 35.

For a disabled-worker beneficiary, Y is calculated as follows:

- Determine the number of elapsed years, which is equal to the year of disability onset (not later than the year the worker turned age 62) minus the greater of 1951 or the year the disabled worker turned age 22.
Elapsed Years $=\min \{$ Year of disability onset, Year attained age 62$\}-\max \{1951$, Year attained age 22$\}$
- Divide the elapsed years by five and truncate. Subtract this number (cannot exceed five) from the number of elapsed years.

$$
\mathrm{Y}=\text { Elapsed } Y \text { ears }-\min \left\{\left[\frac{\text { Elap sedYears }}{5}\right\rfloor, 5\right\}
$$

- Y must be at least 2.

Step 3: Determine AIME
Finally, an individual's AIME is computed by summing the highest Y indexed earnings and dividing by the number of months in those years. Hence, for each record,

$$
\text { AIME(r) }=\frac{\sum \text { Highest } \mathrm{Y} \text { Indexed Earnings }(\mathrm{r})}{\mathrm{Y} * 12}
$$

## Equation 4.2.3-AIME ${ }_{n}($ r $)$

The Possible AIME value is divided into 30 intervals (bend point subintervals). The length of each interval in 1979 dollars is given below:

$$
\mathrm{bp}_{n}= \begin{cases}\$ 45, & \text { if } 0<n \leq 13 \\ \$ 100, & \text { if } 14 \leq n \leq 18 \\ \$ 200, & \text { if } 19 \leq n \leq 28 \\ \$ 1000, & \text { if } 29 \leq n \leq 30\end{cases}
$$

Thus, the interval points of AIME division given below in 1979 dollars, $\mathrm{y}_{\mathrm{k}}$, are equal to $\sum_{n=1}^{k} \mathrm{bp}_{n}$ and

$$
\mathrm{y}_{k}= \begin{cases}\$ 180, & \text { if } k=4 \\ \$ 1085, & \text { if } k=18 \\ \$ 5085, & \text { if } k=30\end{cases}
$$

For each record (r), the values for $\mathrm{bp}_{n}$ are indexed from 1977 to his/her indexing year $i$ using the Social Security average wage index (AWI). So for $n=1$ to 30,

$$
\mathrm{bp}_{n}(r)=\mathrm{bp}_{n} * \frac{\mathrm{AWI}(\mathrm{i})}{\mathrm{AWI}(1977)}
$$

Next the record's AIME amount, $\operatorname{AIME}(r)$, is compared to the indexed intervals. If

$$
\sum_{n=1}^{k-1} \mathrm{bp}_{n}(r)<\operatorname{AIME}(r) \leq \sum_{\mathrm{n}=1}^{\mathrm{k}} \mathrm{bp}_{n}(r)
$$

then AIME (r) falls within the $k$ th interval. And for $n=1$ to 30 ,

$$
\operatorname{AIME}_{\mathrm{n}}(r)= \begin{cases}\mathrm{bp}_{n}(r), & \text { if } n<k \\ \operatorname{AIME~}(r)-\sum_{n=1}^{k} \mathrm{bp}_{n}(r), & \text { if } n=k \\ 0, & \text { if } n>k\end{cases}
$$

## Equation 4.2.4 - Potential AIME Percentages (PAPS)

Finally, for $n=1$ to 30 , AWARDS sums the values of $\mathrm{AIME}_{n}$ and $\mathrm{bp}_{n}$ across all the records for years 2011 to 2090 by sex, age (20-64 for disabled workers, and 62-70 for retired workers), and trust fund. The ratio of these values gives the average potential AIME percentages (PAPS)

$$
\operatorname{PAP}_{n}=\frac{\sum_{\mathrm{r}} \operatorname{AIME}_{\mathrm{n}}(r)}{\sum_{\mathrm{r}} \mathrm{bp}_{\mathrm{n}}(r)}
$$

For an example of this calculation, refer to example 6 in appendix 4.2-2 of this subprocess.

## Appendix 4.2-1

This appendix provides additional details on how the AWARDS process imputes covered earnings above the historical wage base.

To do this, AWARDS first computes the cumulative distribution, $F$, of the workers in the sample by their earnings level. Each historical wage base is divided into 20 equal intervals, $n$, and each interval length in year $t$ is

$$
\text { IntervalLength }(t)=\frac{\text { WageBase }(\mathrm{t})}{20}
$$

The cumulative distribution $\mathrm{F}(n, t)$ is the proportion of workers whose earnings are less than IntervalLength $(t)^{*} n$, for $n=1$ to 20. Let NumberWorkers $(n, t)$ be the number of workers whose earnings in year $t$ fall within the $n$th interval, that is the earnings are greater or equal to IntervalLength $(t)^{*}(n-1)$ and less than IntervalLength $(t)^{*} n$. Also, let TotalWorkers( t ) be the total number of workers in the sample with earnings in year t . Then for any $n, 1 \leq n \leq 20$,

$$
\mathrm{F}(n, t)=\frac{\sum_{m=1}^{n} \operatorname{NumberWorkers}(m, t)}{\operatorname{TotalWorkers}(t)} .
$$

Once $\mathrm{F}(n, t)$ is computed for $n=1$ to 20, AWARDS extends the function for those who had earnings at the wage base. To extrapolate F past the historical base (define $\mathrm{F}(n, t)$ for $n>20$ ), AWARDS groups the maximum earners in each year in the sample based on the number of years they had earnings at the wage base during the next four years ( $0,1,2,3,4$ ). Under the assumption of uniform distribution within each group, AWARDS assigns an $\mathrm{F}\left(n_{r}, t\right)$ value to each record with earnings at the tax maximum beginning with the group that has no other earnings at the tax maximum during the next four years and ending with the group that has maximum earnings in each of the next four years. Note that for these beneficiaries $\mathrm{F}\left(n_{r}, t\right)>$ $\mathrm{F}(20, t)$. Once $\mathrm{F}\left(n_{r}, t\right)$ is computed for these beneficiaries, values for $\mathrm{F}(n, t)$, where $n>20$ are estimated.

To find $\mathrm{F}(n, t)$, where $n>20$, the log odds transformation is utilized. The odds ratio,

$$
\mathrm{T}(n, t)=\frac{\mathrm{F}(n, t)}{1-\mathrm{F}(n, t)} \text {, where } n \leq 20
$$

is the ratio of (1) the proportion of beneficiaries with earnings levels below the $n$th interval to (2) the proportion of beneficiaries with earnings levels above the $n$th interval. Next, the natural logarithm of the odds ratio is computed, giving the log odds transformation,

$$
\mathrm{Y}(n, t)=\ln [\mathrm{T}(n, t)]=\ln \left(\frac{\mathrm{F}(n, t)}{1-\mathrm{F}(n, t)}\right), \text { where } n \leq 20
$$

Utilizing the most linear portion of the function at the upper values of $n$, AWARDS regresses Y on those values. The regression line of Y has the form

$$
\hat{\mathrm{Y}}(n, t)=\beta_{0}+\beta_{1} * n
$$

Finally, the amount of covered earnings of a record that has earnings at the taxable maximum is determined based on the $\mathrm{F}\left(n_{r}, t\right)$ value assigned to the record. The $\mathrm{F}\left(n_{r}, t\right)$ value for this record is used in the above equations to determine $\mathrm{T}\left(n_{r}, t\right), \mathrm{Y}\left(n_{r}, t\right)$, and then $n_{r}$, the non-integer value for $n$ in the regression equation of $\hat{\mathrm{Y}}$ above. Thus, if earnings $(r, t)=$ wage base in year $t$ then

$$
\text { CoveredEarnings }(\mathrm{r}, \mathrm{t})=n_{r} * \text { IntervalLength }(\mathrm{t})+\text { error }^{49},
$$

where $n_{r}$ is the record's non-integer value for $n$ in the regression equation of $\hat{\mathrm{Y}}$ above.
If earnings $(r, t)<$ wage base in year $t$, then CoveredEarnings $(r, t)=$ earnings $(r, t)$
At this point, AWARDS defines the expected taxable earnings of a future sample as,

$$
\text { Earnings }(r, t)= \begin{cases}\text { CoveredEarnings }(\mathrm{r}, \mathrm{t}), & \text { CoveredEarnings }(\mathrm{r}, \mathrm{t})<\text { future wage base }(\mathrm{t}) \\ \text { future wage base }(\mathrm{t}), & \text { CoveredEarnings }(\mathrm{r}, \mathrm{t}) \geq \text { future wage base }(\mathrm{t})\end{cases}
$$

[^37]
## Appendix 4.2-2

This appendix provides examples to help understand the calculations described in the model documentation of the AWARDS subprocess. These examples do not reflect actual values.

## Example 1.1: (OASI-Male with increasing economy-wide covered worker rates)

Task: In projecting the 2007 sample of newly entitled male beneficiaries to represent newly entitled male beneficiaries in 2050, an adjustment to the earnings histories for those males age 40-44 is needed to reflect higher covered worker rates expected for males in this age group.
This example illustrates the calculation of the projected covered worker rate for males who are age 40-44 in the projection period. We will be comparing the group of males age 40-44 in the base period with its counterpart group of males age 40-44 in the projection period.

## Information given:

- Newly entitled retired male beneficiaries represented in the 2007 sample are age 40-44 in the base period, 1977-1989, and the counterpart group of males retiring in 2050 is age 40-44 in the projection period, 2020-2032.
- Based on the 2007 sample, the covered worker rate for males age 40-44 in the base period $=88.0 \%$.
- Economy-wide covered worker rate for males age $40-44=85.0 \%$ in the base period.
- Economy-wide covered worker rate for males age $40-44=91.0 \%$ in the projection period.


## Calculations:

1. The difference between the economy-wide covered worker rate for males age $40-44$ in the projection period and in the base period is $91.0 \%-85.0 \%$ or $6.0 \%$.
2. The potential difference in the economy-wide covered worker rate for males age $40-44$ in the base period is $100.0 \%-85.0 \%$ or $15.0 \%$.
3. The ratio from steps 1 and 2 is $6 / 15$ or $40.0 \%$.
4. The potential difference in the sample's covered worker rate for the males age $40-44$ in the base period is $100.0 \%-88.0 \%$ or $12.0 \%$.
5. The ratio from step 3 is multiplied by the potential difference in the sample's covered worker rate for males age 40-44 in the base period to yield $4.8 \% ~(40.0 \% * 12.0 \%=4.8 \%)$.
6. The amount in step $5(4.8 \%)$ would be added to the sample's covered worker rate in the base period to yield the sample's covered worker rate for males who are age 40-44 in the projection period (92.8\%).

## Example 1.2 : (OASI - Female with increasing economy-wide covered worker rates)

Task: In projecting the 2007 sample of newly entitled female beneficiaries to represent newly entitled female beneficiaries in 2050, an adjustment to the earnings histories for those females age 40-44 is needed to reflect higher covered worker rates expected for females in this age group.
This example illustrates the calculation of the projected covered worker rate for females who are age 40-44 in the projection period. We will be comparing the group of females age 40-44 in the base period with its counterpart group of females age 40-44 in the projection period.

## Information given:

- Newly entitled retired female beneficiaries represented in the 2007 sample are age 40-44 in the base period, 1977-1989, and the counterpart group of females retiring in 2050 is age 40-44 in the projection period, 2020-2032.
- Based on the 2007 sample, the covered worker rate for females age 40-44 in the base period $=75.0 \%$.
- Economy-wide covered worker rate for females age $40-44=68.0 \%$ in the base period.
- Economy-wide covered worker rate for females age $40-44=72.0 \%$ in the projection period.
- $\quad$ Sample covered worker rate for males age $40-44=80.0 \%$ in the projection period.


## Calculations:

1. The absolute difference in the economy-wide covered worker rate for females age 40-44 from the base period to the projection period is $72.0 \%$ $68.0 \%$ or $4.0 \%$.
2. The difference between the projected sample covered worker rate for males age 40-44 and the economy-wide covered worker rate for females age $40-44$ in the base period is $80.0 \%-68.0 \%$ or $12.0 \%$.
3. The ratio from steps $l$ and 2 is $4.0 / 12.0$ or $331 / 3 \%$.
4. The difference between the projected sample covered worker rate for males age 40-44 and sample's covered worker rate for the females age 4044 in the base period is $80.0 \%-75.0 \%$ or $5.0 \%$.
5. The ratio from step 3 is multiplied by the potential difference in the sample's covered worker rate for females age 40-44 in the base period to yield $1.667 \% ~(331 / 3 \% * 5.0 \%=1.667 \%)$.
6. The amount in step $5(1.667 \%)$ would be added to the sample covered worker rate for females age 40-44 in the base period (75.0\%) to yield the sample covered worker rate for females who are age 40-44 in the projection period (76.667\%).

## Example 1.3: (OASI-Male with decreasing economy-wide covered worker rates)

Task: In projecting the 2007 sample of newly entitled male beneficiaries to represent newly entitled male beneficiaries in 2050, an adjustment to the earnings histories for those males age 40-44 is needed to reflect lower covered worker rates expected for males in this age group.
This example illustrates the calculation of the projected covered worker rate for males who are age 40-44 in the projection period. We will be comparing the group of males age $40-44$ in the base period with its counterpart group of males age 40-44 in the projection period.

## Information given:

- Newly entitled retired male beneficiaries represented in the 2007 sample are age 40-44 in the base period, 1977-1989, and the counterpart group of males retiring in 2050 is age 40-44 in the projection period, 2020-2032.
- Based on the 2007 sample, the covered worker rate for males age 40-44 in the base period $=88.0 \%$.
- Economy-wide covered worker rate for males age $40-44=85.0 \%$ in the base period.
- Economy-wide covered worker rate for males age $40-44=75.0 \%$ in the projection period.


## Calculations:

1. The economy-wide covered worker rate for males age 40-44 in the projection period is $75.0 \%$.
2. The economy-wide covered worker rate for males age 40-44 in the base period is $85.0 \%$.
3. The ratio from steps 1 and 2 is $75 / 85$ or $88.24 \%$.
4. The ratio from step 3 is multiplied by the sample's covered worker rate for males age 40-44 in the base period to yield 77.6\% (88.2 \% * 88\% = 77.6\% ).

The amount in step 4 (77.6\%) would be the sample covered worker rate for males who are age 40-44 in the projection period.

## Example 1.4: (DI-Male with decreasing economy-wide covered worker rates)

Task: In projecting the 2007 sample of newly entitled male DI beneficiaries to represent newly entitled male beneficiaries in 2040, an adjustment to the earnings histories for those males age 40-44 is needed to reflect lower covered worker rates expected for males in this age group.

This example illustrates the calculation of the projected covered worker rate for males who are age 40-44 in the projection period. We will be comparing the group of males age 40-44 in the base period with its counterpart group of males age 40-44 in the projection period. If the projection period is less than 40 years from the sample year, the following calculations would apply; otherwise, the projected sample covered worker rate for DI males would be the same as the economy-wide covered worker rate for DI males age 4044 , adjusted in a manner similar to that described below.

## Information given:

- Newly entitled retired male beneficiaries represented in the 2007 sample are age 40-44 in the base period, 1977-1989, and the counterpart group of males retiring in 2040 is age 40-44 in the projection period, 2010-2022.
- Based on the 2007 sample, the covered worker rate for males age 40-44 in the base period $=88.0 \%$.
- Adjusted economy-wide covered worker rate for males age 40-44 $=85.0 \%$ in the base period. This rate is the average of the most recent $x$ years of "adjusted covered worker rates", where $\mathrm{x}=$ the number of years with earnings in the sample for that age group. For each of the previous x years, the "adjusted covered worker rate" equals the economy-wide covered worker rate plus the difference between the sample covered worker rate for that age group and the economy-wide rate, limited by the maximum sample covered worker rate.
- Adjusted economy-wide covered worker rate for males age $40-44=75.0 \%$ in the projection period. This rate is the average of the most recent x years of "adjusted covered worker rates", where $x=$ the number of years with earnings in the sample for that age group. For each of the previous x years, the "adjusted covered worker rate" equals the economy-wide covered worker rate plus the difference between the sample covered worker rate for that age group and the economy-wide rate, limited by the maximum sample covered worker rate. For projection years after (sample year -1), the difference is phased in from the difference in sample year - 1 to the average difference for all historical earnings years.
- Weighting factor 1 is 0.825 or (2040-2007)/40.
- Weighting factor 2 is 0.175 or (1-0.825).


## Calculations:

1. The potential difference in the economy-wide covered worker rate for males age $40-44$ in the projection period is $100.0 \%-75.0 \%$ or $25.0 \%$.
2. The potential difference in the economy-wide covered worker rate for males age $40-44$ in the base period is $100.0 \%-85.0 \%$ or $15.0 \%$.
3. The ratio from steps 1 and 2 is $25 / 15$ or $1662 / 3 \%$.
4. The potential difference in the sample's covered worker rate for the males age $40-44$ in the base period is $100.0 \%-88.0 \%$ or $12.0 \%$.
5. The ratio from step 3 is multiplied by the potential difference in the sample's covered worker rate for males age 40-44 in the base period to yield $20.0 \% ~(1662 / 3 \%$ * 12.0\% = 20.0\% ).
6. The ratio from step 5 ( $20.0 \%$ ) then is subtracted from $100 \%$ to yield 80.0\%.
7. Multiply weighting factor $1(0.825)$ by the economy-wide covered worker rate for males age 40-44 in the projection period (0.75) to yield $61.9 \%$ (0.825*0.75)
8. Multiply weighting factor $2(0.175)$ by the amount in step $6(0.8)$ to yield $14 \%(0.175 * 0.8)$
9. Sum up the amounts in step 7 and 8 to yield the sample covered worker rate for DI males who are age 40-44 in the projection period (75.9\%).

## Example 2:

Task: In projecting the 2007 sample of newly entitled male OASI beneficiaries to represent newly entitled male OASI beneficiaries in 2020, an adjustment to the earnings histories for those males age 40-44 is needed to reflect higher covered worker rates expected for males in this age group. The amount of increase in the covered worker rates is computed as 4 percent. To achieve this target, the desired number of records with zero reported earnings in this age group are randomly selected and assigned earnings.

This example illustrates the calculation of earnings to be assigned to a randomly chosen newly entitled retired male record with zero taxable earnings in the base year.

## Information given:

- Newly entitled retired male beneficiaries represented in the 2007 sample are age 40-44 in the base period, 1977-1989, and the counterpart group of males retiring in 2020 will be age 40-44 in the projection period, 19902002.
- Based on the 2007 sample, a male record, $r=60,000$, has been randomly selected to replace his zero taxable earnings reported in the base year 1984 with an amount based on his career earnings pattern. This record is age 63 in 2007, and his year of birth is 1944.
- A beneficiary retiring at age 63 in 2020 will have a year of birth of 1957. And, the corresponding projection year to the base year of 1984 is the projection year 1997.
- $\quad$ The Average Indexed Earnings for this record, AIE $(60,000)$, is computed to be $\$ 43,465$. Note: This value is calculated by (1) using the record's annual taxable earnings reported each year through 2006, (2) converting them to 2006 year dollars, and then (3) summing the highest 35 years of earnings and dividing by 35 .
- $\quad$ The Average Indexed Earnings for a hypothetical worker, $\operatorname{AIE}(w)$ whose year of birth is 1944 is $\$ 41,995$. This value is calculated as above given the hypothetical worker earned the average taxable earnings in each of the base years for males retiring at age 63 in the 2007 sample.
- The projected Average Taxable Earnings ${ }^{50}$ of males retiring in 2020 for the projection year 1997 (converted to 1984 dollars ${ }^{51}$ ) is ${ }^{\text {Pre }}$ ATE $_{2020}$ (male,1997) = \$18,718.


## Calculations:

1. The ratio of the Average Indexed Earnings for record number 60,000, AIE $(60,000)$ to the Average Indexed Earnings of a hypothetical male worker born in 1944 and retiring at age 63, $\operatorname{AIE}(w)$ is $\$ 43,465 / \$ 41,995$ or 1.035 .
2. The amount in step 1 (1.035) would be multiplied by
${ }^{\text {Pre }}$ ATE $_{2020}$ (male,1997), which is given as $\$ 18,718$. This yields the amount of earnings assigned to record number 60,000 in the projection year 1997 representing a sample retiring in 2020, Thus, Earnings $(60,000,1997)=$ 1.035 * $\$ 18,718$ which equals $\$ 19,373$.

## Example 3:

Task: The AWARDS subprocess estimates projected values of Average Taxable Earnings by age and sex using the values ${ }^{52}$ in the 2009 CWHS file supplied by the Economic subprocess as the base year on which to build our projections.

[^38]This example illustrates the calculation of the projected Average Taxable Earnings of the CWHS in 2010 for 42 year old females, cwhS ATE $_{42 \text {,female }}$ (2010). We will be using the number of female covered workers age 42 and the total taxable earnings for females age 42 as given the in 2009 CWHS data.

## Information given:

- The total number of female covered workers age 42 in 2009 reported in the CWHS, cwhs CW $_{42 \text {,female }}(2009)$ is $15,572$.
- The total taxable earnings for females age 42 in 2009 reported in the CWHS is $\$ 528,995,315$.
- The economy-wide number of covered workers for females age 42 in 2009 is $1,574,804$.
- The economy-wide number of covered workers for females age 42 in 2010 is $1,512,465$.
- The economy-wide Average Taxable Earnings (ATE) in 2009 is $\$ 33,278$.
- The economy-wide ATE in 2010 is $\$ 33,673$.


## Calculations:

1. The growth in the economy-wide covered workers for females age 42 from 2009 to 2010 is $1,542,195 / 1,574,804$ or 0.9604 .
2. The growth rate in the economy-wide covered workers for females age 42 from step 1 is applied to the CWHS female covered workers age 42 in 2009, cWHSCW 42 ,female $(2009)$ to yield the projected covered workers for females who are age 42 in 2010, cwhs $C_{42, \text { female }}(2010), 0.9604 * 15,572$ or 14,955
3. The CWHS Average Taxable Earnings for females age 42 in 2009, cwhs ATE $_{42 \text {,female }}$ (2009) is computed using the given CWHS total taxable earnings and total covered workers for females age 42 in 2009 (\$528,995,315 / 15,572 = \$33,971).
4. The economy-wide growth rate in the average taxable earnings from 2009 to 2010 is $\$ 33,673$ / $(\$ 33,278)$ or 1.0119
5. The growth rate in step 4 (1.0119) is applied to the amount in step $3(\$ 33,971)$ to estimate the preliminary CWHS Average Taxable Earnings for females age 42 in 2010, cwhsATE' ${ }_{42, \text { female }}$ (2010) $=\$ 34,375$ (1.0119*\$33,971)
6. The value from step $5(\$ 34,375)$ is multiplied by the value in step 2 $(14,955)$ to yield the preliminary CWHS projected total taxable earnings for females age 42 in $2010(\$ 514,078,125)$.
adjustment factors were applied to data in years 2006 through 2009.
7. Note a final multiplicative adjustment is made to cwhs ${ }^{\prime}$ TE $_{42 \text {,female }}$ (2010) to obtain cwhs ${ }^{2} E_{42, \text { female }}(2010)$. This adjustment is made once the preliminary taxable earnings have been computed for each age and sex in 2010 in order to ensure the growth rate in the aggregate average taxable earnings between 2009 and 2010 matches the growth rate in the ATE from the Economic process.

## Example 4:

Task: In projecting the 2007 sample of newly entitled female beneficiaries to represent newly entitled female beneficiaries in 2050, the projected Average Taxable Earnings of females in the sample ( $\left.\mathrm{ATE}_{\mathrm{f}}\right)^{53}$ for year $t=2020$ must be adjusted by an amount, $\delta(2020)$, to meet a targeted Average Taxable Earnings(ATEf ${ }_{f}$ ) for 2020.

This example illustrates the calculation of $\delta(2020)$ for the female cohort retiring at ages 62 to 70 in the projection year 2050. The cohort is age 32 to 40 in the projection year 2020. The value $\delta(2020)$ is the dollar amount in which the average annual earnings levels are adjusted for females in this age-group in the year 2020 and retiring in 2050. We will be comparing this group of females age 32-40 in the projection 2020 year with its counterpart group of females age 32-40 in the base year 1977.

## Information given:

- A cohort of newly entitled retired female beneficiaries retiring at ages 62 to 70 represented in the 2007 sample are ages 32-40 in the base year, 1977, and the counterpart group of females retiring in 2050 are ages 32-40 in the projection year, 2020.
- Based on the 2007 sample, the average taxable earnings for females in the base year 1977 is $\$ 4,536$.
- For a sample projected to be retiring in 2050, the average taxable earnings ( $\mathrm{ATE}_{\mathrm{f}}$ ) for females in the projection year 2020 is $\$ 4,564^{54}$, after applying adjustments to the records' earning levels for changes in the wage base and in covered worker rates.
- Based on the 2009 CWHS data, the average taxable earnings for females ages 32-40 in the base year 1977 is $\$ 4,218$.
- $\quad$ The projected average taxable earnings in the CWHS for females ages 3240 in the projection year 2020 (in 1977 dollar amounts) is \$4,640.

[^39]
## Calculations:

1. The increase in the average taxable earnings for females ages 32-40 in the CWHS from the base year $1977(\$ 4,218)$ to the projection year 2020 $(\$ 4,640)^{12}$ is 10 percent.
2. Based on the value from step 1 the expected annual average taxable earnings (ATEf') of females ages 32-40 in 2020 and retiring in 2050 is $\$ 4,536 * 1.10$ or $\$ 4,990$
3. The difference in $\operatorname{ATE}_{f^{\prime}}(\$ 4,990)$ and $\operatorname{ATE}_{f^{\prime}}(\$ 4,564)$ yields the $\delta(2020)$ value $\$ 426$ ( $\$ 4,990-\$ 4,564=\$ 426)$.

## Example 5:

Task: In projecting the 2007 sample of newly entitled female OAB beneficiaries to represent newly entitled female OAB beneficiaries in 2033, for year $t=2023, \delta(2023)$ is positive indicating an adjustment to earnings histories is needed to reflect higher average taxable earnings by this cohort for the projection year 2023.

This example illustrates the calculation of the ratio(2023) in projection year 2023 for the female cohort retiring at ages 62 to 70 in the projection year 2033. The value, ratio(2023), is the adjustment ratio that will be applied to this cohort projected covered earnings in 2023 in order to achieve the targeted Average Taxable Earnings of this cohort for 2023.

## Information given:

- Earnings in the projection year 2023 for a group of newly entitled female beneficiaries retiring in 2033 is the counterpart corresponding to earnings in the base year 1997 for the group of newly entitled female beneficiaries in the 2007 sample.
- For newly entitled females retiring in 2033, the average taxable earnings ( $\mathrm{ATE}_{2023}$ ) for the projection year 2023 is $\$ 19,970^{55}$.
- $\quad \delta(2023)$, the difference in the targeted average taxable earnings ATE $_{2023}{ }^{\prime}$ and ATE $_{2023}$, is given to be $\$ 1,590$.
- The wage base for the projection year 2023 (in 1997 dollar amounts) is \$57,600
- The number of females in the projected 2033 sample with earnings below the wage base in 2023 is 52,800 .
- The dollar amounts below the wage base in 2023 are divided into 20 equal intervals, IntervalLength(2023), of \$2,880 each.

[^40]- The number of females in the 2033 sample who in 2023 have earnings falling in the $20^{\text {th }}$ interval (their earnings are between $\$ 54,720$ and $\$ 57,600$ ) is 465
- For female OABs the constant $\alpha$ when $\delta(t)$ is positive is 0.02 .


## Calculations:

- The interval in which $\$ 56,010$ (the wage base in 2023 minus $\delta(2023)$ or $\$ 57,600-\$ 1,590$ ) falls within is interval $j(2023)$ and is found by rounding $\delta(2023)$ / IntervalLength $(2023)$ or $(\$ 1,590 / \$ 2,880)$ to the lowest integer and subtracting this value from 20. This yields interval 20.
- The dollar amount from interval 20 to the wage base is $h(2023)$, and is $\$ 2,880 *(21-20)$ or $\$ 2,880$
- Using the equation given for $z(t)$ yields,

$$
z(2023)=\frac{\$ 1,590 *(52,800)+\frac{\$ 1,590}{\$ 2,880} *(465) * \frac{\$ 1,590}{2}}{52,800}=\$ 1,594
$$

Note, the value for $z(2023)$ is higher than $\delta(2023)$ in order to adjust for those records above or close to the wage base.

- The ratio multiplied to the covered earnings in 2023 for females retiring in 2033 is $1+(\$ 1,594 / \$ 19,970)+0.02$, or 1.10 .


## Example 6:

Task: The AWARDS subprocess calculates the Average Indexed Monthly Earnings (AIME) of each beneficiary in the sample. The AIME values are then divided into 30 intervals.

This example illustrates the division of a possible AIME value into intervals.

## Information given:

- An OAB beneficiary retired at age 64 in 2007
- This OAB beneficiary is record \#150000 in the sample ( $\mathrm{r}=150000$ )
- The AIME for this individual is $\$ 3,000$
- The initial eligibility year is 2005, the year the individual turned age 62.
- $\quad$ The length of each interval $\left(\mathrm{bp}_{n}\right)$ in 1979 dollars is given in Equation 4.2.3. The length of each interval in 2005 dollars is given by the equation

$$
\mathrm{bp}_{\mathrm{n}}(\mathrm{r})=\mathrm{bp}_{n} * \mathrm{AWI}(2003) / \mathrm{AWI}(1977)
$$

where $\mathrm{bp}_{n}$ is the length of interval n in 1979 dollars

- $\quad$ The average wage index (AWI) for year 2003 is $\$ 34,064.95$
- $\quad$ The AWI for year 1977 is $\$ 9,779.44$
- When converting the intervals from 1979 dollars to 2005 dollars, there is a 2-year lag in AWI values.
- $\quad \operatorname{AIME}_{\mathrm{n}}(150000)$ is the AIME value in interval n for Record \#150000


## Calculations:

- $\quad$ The AIME for this individual $(\$ 3,000)$ is compared to the indexed intervals. It falls within the $16^{\text {th }}$ interval.
- The AIME $_{16}$ is the residual of $\$ 3,000$ subtracting the cumulative indexed bend points up to $15^{\text {th }}$ interval ( $\$ 2,734.41$ ). The AIME for this individual in $16^{\text {th }}$ interval is $\$ 265.59$
- $\quad \operatorname{AIME}_{\mathrm{n}}$ (150000) for interval 1 through15 equals $\mathrm{bp}_{\mathrm{n}}$ (150000) for the corresponding intervals, such that $\mathrm{PAP}_{\mathrm{n}}=\mathrm{AIME}_{\mathrm{n}} / \mathrm{bp}_{\mathrm{n}}=1$ for these intervals
- $\quad \operatorname{AIME}_{16}(150000)=\$ 265.59$, such that $\mathrm{PAP}_{16}=\$ 265.59 / \$ 348.33=0.7625$
- $\quad \operatorname{AIME}_{\mathrm{n}}$ (150000) for interval 17 through 30 equals 0 , such that $\mathrm{PAP}_{\mathrm{n}}=0$ for these intervals.
- $\quad$ The following table details these results.

| n | $\begin{array}{r} \mathrm{bp}_{n} \text { in } \\ 1979 \end{array}$ dollars | $\begin{array}{r} \mathrm{bp}_{n}(r) \text { in } \\ 2005 \\ \text { dollars } \end{array}$ | $\begin{array}{r} \sum_{k=1}^{n} \mathrm{bp}_{\mathrm{n}}(r) \\ \mathrm{i} \\ \mathrm{n} 2005 \\ \text { dollars } \end{array}$ | $\begin{array}{r} \text { AIME }_{n}(r) \\ \text { in } 2005 \\ \text { dollars } \end{array}$ | $\begin{array}{r} \mathrm{PAP}_{\mathrm{n}} \\ \text { in } 2005 \\ \text { dollars } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | \$45 | \$156.75 | \$156.75 | \$156.75 | 1 |
| 2 | 45 | 156.75 | 313.50 | 156.75 | 1 |
| 3 | 45 | 156.75 | 470.25 | 156.75 | 1 |
| 4 | 45 | 156.75 | 627.00 | 156.75 | 1 |
| 5 | 45 | 156.75 | 783.75 | 156.75 | 1 |
| 6 | 45 | 156.75 | 940.50 | 156.75 | 1 |
| 7 | 45 | 156.75 | 1,097.25 | 156.75 | 1 |
| 8 | 45 | 156.75 | 1,254.00 | 156.75 | 1 |
| 9 | 45 | 156.75 | 1,410.75 | 156.75 | 1 |
| 10 | 45 | 156.75 | 1,567.50 | 156.75 | 1 |
| 11 | 45 | 156.75 | 1,724.25 | 156.75 | 1 |
| 12 | 45 | 156.75 | 1,881.00 | 156.75 | 1 |
| 13 | 45 | 156.75 | 2,037.75 | 156.75 | 1 |


| 14 | 100 | 348.33 | $2,386.08$ | 348.33 | 1 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 15 | 100 | 348.33 | $2,734.41$ | 348.33 | 1 |
| 16 | 100 | 348.33 | $3,082.74$ | 265.59 | 0.7625 |
| 17 | 100 | 348.33 | $3,431.07$ | 0 | 0 |
| 18 | 100 | 348.33 | $3,779.40$ | 0 | 0 |
| 19 | 200 | 696.66 | $4,476.06$ | 0 | 0 |
| 20 | 200 | 696.66 | $5,172.72$ | 0 | 0 |
| 21 | 200 | 696.66 | $5,869.38$ | 0 | 0 |
| 22 | 200 | 696.66 | $6,566.04$ | 0 | 0 |
| 23 | 200 | 696.66 | $7,262.70$ | 0 | 0 |
| 24 | 200 | 696.66 | $7,959.36$ | 0 | 0 |
| 25 | 200 | 696.66 | $8,656.02$ | 0 | 0 |
| 26 | 200 | 696.66 | $9,352.68$ | 0 | 0 |
| 27 | 200 | 696.66 | $10,049.34$ | 0 | 0 |
| 28 | 200 | 696.66 | $10,746.00$ | 0 | 0 |
| 29 | 1000 | $3,483.32$ | $14,229.32$ | 0 | 0 |
| 30 | 1000 | $3,483.32$ | $17,712.64$ | 0 | 0 |

### 4.3. Cost

## 4.3.a. Overview

The COST subprocess projects the trust fund operations for each year of the long-range 75-year period. The COST subprocess projects the income and cost for each trust fund (OASI and DI). The two components of non-interest income are payroll contributions and taxation of benefits. The other component of income is interest earned on the trust fund assets. The three components of cost are scheduled benefits, administrative expenses, and the railroad interchange. Each of these components is projected for each trust fund (OASI and DI). The end-of-year assets is computed by taking the beginning-of-year assets (ASSETS), adding payroll contributions (CONTRIB), taxation of benefits (TAXBEN), and interest income (INT), and subtracting scheduled benefits ( $B E N$ ), administrative expenses ( $A D M$ ), and the railroad interchange ( $R R$ ).

Equations 4.3.1 through 4.3.6 outline this overall structure and sequence.

$$
\begin{align*}
\text { CONTRIB } & =\operatorname{CONTRIB}(\cdot)  \tag{4.3.1}\\
\text { BEN } & =\operatorname{BEN}(\cdot)  \tag{4.3.2}\\
\text { TAXBEN } & =\operatorname{TAXBEN}(\cdot)  \tag{4.3.3}\\
A D M & =\operatorname{ADM}(\cdot)  \tag{4.3.4}\\
R R & =R R(\cdot)  \tag{4.3.5}\\
I N T & =\operatorname{INT}(\cdot)  \tag{4.3.6}\\
\text { ASSETS }_{E O Y} & =\text { ASSETS }_{\text {BOY }}+\text { CONTRIB }+\operatorname{TAXBEN}+\operatorname{INT}-B E N-A D M-R R
\end{align*}
$$

The COST subprocess produces annual values that help assess the financial status of the OASI, DI, and combined funds. These include the annual income rate (ANN_INC_RT), annual cost rate (ANN_COST_RT), and trust fund ratio (TFR) as outlined below.

| ANN_INC_RT | $=$ | $A N N_{-} I N C_{-} R T(\cdot)$ |
| :--- | :--- | :--- |
| $A N N \_C O S T \_R T$ | $=$ | $A N N \_C O S T \_R T(\cdot)$ |
| $T F R$ | $=$ | $T F R(\cdot)$ |

The COST subprocess also produces summarized values. These values are computed for the entire 75 -year projection periods, as well as 25 - and 50 -year periods. These include the actuarial balance ( $A C T_{-} B A L$ ), unfunded obligation ( $U N F_{-} O B L$ ), summarized income rate (SUMM_INC_RT), summarized cost rate (SUMM_COST_RT), and closed group unfunded obligation (CLOSEDGRP_UNFOBL).

```
ACT_BAL = ACT_BAL(\cdot)
UNF_OBL = UNF_OBL(\cdot)
SUMM_INC_RT = SUMM_INC_RT(\cdot)
SUMM_COST_RT = SUMM_COST_RT(`)
CLOSEDGRP_UNFOBL = CLOSEDGRP_UNFOBL(`)
```

The following notation is used throughout this documentation:

- $n i$ represents the first year of the projection period-2012 for the 2012 TR
- $n i+74$ represents the final year of the projection period-2086 for the 2012 TR
- $n f$ represents the last year the cost program will project-2090 for the 2012 TR
- niml is equal to ni-1
- nim2 is equal to ni-2
- $n s$ is equal to $n i+9$
- nbase, the year of the sample, is equal to 2007


## 4.3.b. Input Data

Data received as input from the short-range office are presented first. Then data from long range and all other sources are identified separately for each equation.

## Short-range OCACT Data

- Estimates for the first ten years of the projection period for the first six equations mentioned above.
- Assets at the beginning of year ni.

All of this information is updated annually.

## Long-range OCACT and other Data

## i. Equation 4.3.1 - Tax Contributions (CONTRIB)

## Economics-Process 2

- Projected effective taxable payroll for years niml through $n f$, updated yearly


## Other

- Projected employee/employer payroll tax rate, by trust fund and year, for years 1981 through $n f$, updated as needed (e.g., as required due to legislative changes)
ii. Equation 4.3.2 - Scheduled Benefits (BEN)


## Demography-Process 1

- Projected number of married and divorced people in the Social Security area population age 65 and above for beginning of years niml through 2101, updated yearly


## Economics-Process 2

- Historical COLA for years 1975 through nim2, updated yearly
- Historical CPI for years 1990 through nim1, updated yearly
- Projected cost of living adjustment (COLA) for years niml through $n f$, updated yearly
- Historical SSA average wage index for year nim2, updated yearly
- Projected percent increases in the average wage index for years niml through nf, updated yearly


## Beneficiaries-Process 3

- Initial and ultimate incurred but not reported (IBNR) DI beneficiary distribution by age, duration of disability (0 through 9 years and 10+ years) and sex, updated every few years (subprocess \#3.2). Factors are read in such that there is a ten-year linear phase-in from initial factors to ultimate factors. The number of DI beneficiaries in current-payment status is equal to the number of currently entitled DI workers times the IBNR factor.
- Projected number of disabled workers in current-pay status by sex, age in currentpay, and duration of disability ( 0 through 9 and 10+) for years niml through $n f$, updated yearly from subprocess 3.2

Projected number of retired worker beneficiaries in current-pay status by sex, age in current-pay, and age at entitlement for years niml through $n f$, updated yearly from subprocess 3.3

Projected number of auxiliary beneficiaries (by benefit category) of retiredworker, deceased-worker, and disabled-worker beneficiaries for years niml through $n f$, updated yearly from subprocess 3.3

- Projected number of disability insurance beneficiaries who convert to retirement insurance status upon the attainment of normal retirement age by age in current pay, for years niml through nf, updated yearly from subprocess 3.2 and 3.3
- Retired Workers 65+ by sex, and marital status (single, married, widowed, and divorced)

Retired Workers 62+ by sex, and marital status (single, married, widowed, and divorced)

## Other

$\bullet$
Total (aggregate) PIA and MBA, not actuarially reduced, of DI male and female workers in current payment status, updated yearly from the 1-A Table Supplement

- Total (aggregate) PIA and MBA, actuarially reduced, of DI male and female workers in current payment status, updated yearly from the 1-A Table Supplement

Cumulative distribution of AIME dollars for newly entitled retired-worker
beneficiaries by age (62 through 70) and sex, for years niml through $n f$, updated yearly from subprocess 4.2

- Cumulative distribution of AIME dollars for newly entitled disabled-worker beneficiaries by age (20 through 64) and sex, for years niml through $n f$, updated yearly from subprocess 4.2. Ages 15 through 19 are assumed to have the same distribution of dollars as does age 20. Ages 65 and 66 are assumed to have the same distribution of dollars as does age 64
- Age distribution of newly entitled retired-worker beneficiaries in the AIME awards sample by sex, updated in years that the sample changes, from subprocess 4.2

Starting average PIA matrix for retired-worker benefits for the year niml, by age at entitlement, age in current-pay and sex, updated yearly

- $\quad$ Starting average PIA matrix for disabled-worker benefits, for the year nim1, by age in current-pay, duration and sex, updated yearly
- $\quad$ Starting average PIA matrix for beneficiaries who convert from disabled worker to retirement worker status for the year niml, by age in current-pay and sex, updated yearly
- $\quad$ Starting average MBA matrix for retired-worker benefits for the year niml, by age at entitlement, age in current-pay and sex, updated yearly
- $\quad$ Starting average MBA matrix for beneficiaries who convert from disabled worker to retirement worker status for the year niml, by age in current-pay and sex, updated yearly
- Benefit relationships between worker and auxiliary benefits (linkages) for the year nim1, for all benefit categories and worker account holders of both sexes, updated yearly from qlink11.xls
- $\quad$ Retroactive payment loading factors for auxiliary beneficiary categories for all years, for each benefit category and both sexes, updated yearly
- Initial and ultimate post entitlement factors for retired workers by sex and duration updated yearly. Factors are read in such that there is a twenty-year linear phase-in from initial factors to ultimate factors.
- Initial and ultimate post entitlement factors for disabled workers by sex and duration updated yearly. Factors are read in such that there is a twenty-year linear phase-in from initial factors to ultimate factors.
- Initial and ultimate post entitlement factors for DI conversion workers by sex and duration updated yearly. Factors are read in such that there is a twenty-year linear phase-in from initial factors to ultimate factors.
- $\quad$ Average excess MBA amounts for dually entitled wives and widows, updated yearly from Statistical Supplement
- Initial Windfall Elimination Provision (WEP) factors by sex and age for attributed year, updated every 2 years
- Ultimate WEP factors by sex read in as a percentage of the way from initial factors to one, updated every 2 years

Year in which ultimate WEP factor is reached by age at initial entitlement (6270), updated every 2 years

- Trendline by which WEP factors are phased-in from initial value to ultimate value, updated every 2 years
- Workers' Compensation cumulative factors by duration that adjust benefits to account for decreasing offsets (i.e. - Workers Comp offsets decrease as duration increases), updated yearly
- Workers' Compensation reduction factors (used in retroactive category) to reflect offsets starting and stopping in the year of DI entitlement
- Workers' Compensation parameter to account for offsets that begin and end in the year of entitlement, updated yearly
- Dual Entitlement regression coefficients for the number of wives, widows, and widowers, and the average excess amounts for wives and widows, updated yearly
- Dual entitlement average excess amounts and percentages of exposure population for December, year ni- 1 for wives, widows, and widowers, updated yearly
- Target values for ratios relating to the five above dual entitlement categories, updated yearly
- Number of years in which the difference between the results from the regression coefficients and targeted values are phased in for the five above dual entitlement categories, updated yearly
- $\quad$ Adjustment factors for average retired and disabled worker benefit amounts (PIA and MBA) in current-pay at durations 0 and 1 , by sex, updated yearly


## iii. Equation 4.3.3 - Taxation of Benefits

## Trust Fund Operations and Actuarial Status

- Taxation of benefits as a percentage of scheduled benefits by trust fund for years nim1 through $n f$, updated yearly from subprocess \#4.1
iv. Equation 4.3.4-Administrative Expenses


## Economics-Process 2

- Average wage indexes for years niml through nf, updated yearly
- Ultimate value of productivity factor for the period ni through $n f$ updated yearly


## Beneficiaries-Process 3

- Total number of beneficiaries in current-pay status by trust fund for years niml through $n f$, updated yearly


## v. Equation 4.3.5 - Railroad Interchange

## Economics-Process 2

- Increase in the average wage index for years niml through $n f$, updated yearly
- Ultimate value of productivity factor for the period ni through nf updated yearly


## Trust Fund Operations and Actuarial Status

- Taxation of benefits as a percent of the amount of benefits scheduled to be paid, by trust fund for years niml through $n f$, updated yearly (use same factors as in equation 4.3.3)


## Other input data

- $\quad$ Nominal annual yield rate on the combined OASDI trust fund for years $n i$ through $n f$, updated as the ultimate real interest rate and ultimate CPI are changed by the Trustees.
- Ratio of railroad retirement average benefit to OASI average benefit for the year nim1, updated yearly
- Number of railroad beneficiaries (retirement and disability) for December of year nim3, updated yearly
- Average taxable earnings in railroad employment for year nim2, updated yearly
- Average worker benefit by sex and trust fund, updated yearly from the December nim1 Table I-A Supplement

Ratio of railroad worker benefit to worker benefit by trust fund, updated yearly using 10 years of historical financial interchange benefit data

- Expected railroad new awards as a percent of the average of historical employment data
- Auxiliary loading factor by trust fund, updated yearly using 10 years of historical financial interchange benefit data
- $\quad$ Railroad initial mortality rate by trust fund for year nim2, updated yearly using 10 years of historical financial interchange benefit data
- Railroad mortality improvement rate by trust fund, updated yearly using 10 years of historical financial interchange benefit data


## vi. Equation 4.3.6 - Interest Income

## Economics-Process 2

- Annual increase in the CPI for years $n i$ through $n f$, updated yearly


## Trustees assumptions

- Ultimate real interest rate, reviewed annually


## Other input data

- Factors for exposure to interest rate for benefits, payroll, and taxation of benefits, updated yearly
- Factors for exposure to railroad interchange and administrative expenses, updated periodically
vii. Equations 4.3.7 through 4.3.13 - Annual Values and Summarized Values

All inputs for equations 4.3 .7 through 4.3.13 are estimated internally in the Cost program.

## viii. Equation 4.3.14-Closed Group Unfunded Obligation

## Demographics-Process 1

- $\quad$ Single year population and mortality rate data for years 1941 through 2101, updated yearly
- Population projections by single year of age, 75-99, from nim2 to 2101, updated yearly


## Economics-Process 2

- Historical and projected single-year COLA data and average wage indexing series (AWI) data for years 1975 through 2090 (for COLA) and 1951 through 2090 (AWI), updated yearly
- $\quad$ Projected number of covered workers by single year of age 15-74 from year ni through 2087, updated yearly
- Aggregate number of covered workers aged less than 15, and aged 75 and over, from years ni through 2087, updated yearly
- Ultimate assumed annual average wage increase, wg_ult, updated yearly


## Beneficiaries-Process 3

- Total projected disabled workers by age for years 2011 to 2090, updated yearly
- Total projected aged spouses, divorced aged spouses, surviving aged spouses and divorced surviving aged spouses by sex, single year of age (up to 95+) and for years 2011 to 2090.


## Awards-Process 4

- Projected number of workers and total taxable earnings by single year of age (1574) and sex from 2011 to 2090, updated yearly


## Other

- Total count of beneficiaries in 20 of the 28 beneficiary categories (excluding retired workers, disabled workers, aged spouses (married, divorced, and dually entitled excess), and aged widow(er)s (married, divorced, and dually entitled excess) from the December 2011 Master Beneficiary Record (MBR) ${ }^{56}$ —updated yearly
- Total benefits paid in 20 of the 28 beneficiary categories (excluding retired workers, disabled workers, aged spouses (married, divorced, and dually entitled excess), and

[^41]aged widow(er)s (married, divorced, and dually entitled excess) from the December 2011 MBR—updated yearly

- Consumer Price Index data from 1951-1974 from Bureau of Labor Statistics
- Number of covered workers and average taxable earnings by single year of age 1-14 for years 1991-2008 from 1 percent Continuous Work History Sample (CWHS), updated yearly to include year ni-4
- Number of covered workers and average taxable earnings by single year of age 75-99 for years 1991-2008 from 1 percent CWHS, updated yearly to include year ni-4
- Distribution of assumed age differentials between aged spouses and workers ranging from -12 years to 15 years seniority for the worker by sex of the beneficiary, age of the beneficiary 62-74, and marital status obtained from the December 2010 MBRupdated every 3 years
- Distribution of assumed age differentials between widow(er)s and workers ranging from -6 years to 12 years seniority for the male
- Factors to apply to the $95+$ "in current pay" counts of retired workers, aged spouses, surviving aged spouses, divorced spouses, and dually entitled spouses expanding the single age counts through 119.


## 4.3.c. Development of Output

## i. Equation 4.3.1 - Payroll Tax Contributions (CONTRIB)

It would be natural to estimate the payroll tax contributions by trust fund by multiplying the applicable employer/employee tax rate by effective taxable payroll. However, tax contributions are reported on a cash basis. That is, tax contribution amounts are attributed to the year in which they are actually received by the trust funds, while taxable payroll is attributed to the year in which earnings are paid. In other words, the lag between the time the tax liability is incurred and when the taxes are actually collected must be reflected. If lag represents the proportion of incurred payroll taxes estimated to be received by the trust fund ( $t f$ ) in year $y r$, then tax contributions (CONTRIB) are given by the formula

$$
\begin{aligned}
\operatorname{CONTRIB}(t f, y r)= & \operatorname{lag} \times \operatorname{tax} \text { rate }(t f, y r) \times \operatorname{payroll}(y r) \\
& +(1-\text { lag }) \times \operatorname{tax} \text { rate }(t f, y r-1) \times \operatorname{payroll}(y r-1)
\end{aligned}
$$

for $y r \geq n s$.

The value of lag is estimated from the combined OASI and DI tax contributions estimated to be collected in the final year of the short-range period, $n s$, and is given by

$$
\operatorname{lag}=\frac{\sum_{t f=1}^{2} \operatorname{CONTRIB}(t f, n s)-\sum_{t f=1}^{2}(\operatorname{taxrate}(t f, n s-1) \times \operatorname{payroll}(n s-1))}{\sum_{t f=1}^{2}(\text { taxrate }(t f, n s) \times \operatorname{payroll}(n s)-\operatorname{taxrate}(t f, n s-1) \times \operatorname{payroll}(n s-1))} .
$$

For the first ten years of the long-range period, tax contributions are set equal to those provided by the short-range office. The same value of lag is used for all years, and both trust funds, thereafter.

## ii. $\quad$ Equation 4.3.2 - Scheduled Benefits (BEN)

(1) Disabled-Worker Benefits

## Disabled Worker Beneficiary Matrix

The number of disabled-worker beneficiaries for a given year and sex is provided from the subprocess 3.2. For each projection year, two matrices are provided - one for males and one for females. The structure of each matrix is as follows:

- 11 columns. The columns are indexed by duration of disability (0-9 and $10+$ ).
- 52 rows. These rows correspond to the age in current pay, ages 15 through 66 .

The COST subprocess, however, only uses 10 durations (0-8 and 9+), and 47 ages (ages 20 through 66). This requires a manipulation of the matrix of DI beneficiaries in current-pay status from subprocess 3.2. For ages in current pay greater than or equal to 30 , the duration 9 and $10+$ columns of this matrix are added to give the total number of duration 9+ beneficiaries. For ages $(a g)$ between 20 and 30 inclusive, the number of beneficiaries in current-pay aged $a g$ and duration $a g-20$ is the value provided by the DISABILITY subprocess added to the number of people in current pay aged $a g-j$ and duration $a g-20$ for $j=1, . ., 5$. (For example, the number of people aged 20 of duration 0 is combined with the number of people aged 15, 16, 17, 18 and 19 of duration 0 ; the number of people aged 21 of duration 1 is combined with the number of beneficiaries in current-payment status aged 16, 17, 18, 19, and 20 of duration 1, and so on. In other words, the five nonzero diagonal of the matrix provided by the DISABILITY subprocess is "combined with" the diagonal directly below it and then zeroed out.)

## Building the Average Benefit Matrix for Disabled Workers

In each projection year, the COST subprocess produces an average benefit matrix for each sex. Each matrix is a 47 by 10 matrix whose entries are the average benefit amounts of disabled worker beneficiaries whose age in current pay is indexed by the rows (ages 20 through 66) and whose duration of disability is indexed by the columns (durations 0 through 8 and $9+$ ).

The 100 percent Master Beneficiary Record (100\% MBR) extract is processed by a side model.

The final product of the side model is two matrices of average benefit levels, one for males and one for females, for December niml (2011 for the 2012 TR).

For a given year of the projection period, a new average benefit matrix is obtained by moving the average benefit matrix from the previous year one year forward. The next few paragraphs describe this procedure.

In general, for each age in current-pay, the age and duration are incremented by 1 and the previous PIA amount is given a cost of living adjustment. In addition, the beneficiaries are given a workers' compensation adjustment and a post-entitlement adjustment. For each duration $j=0,1, \ldots, 7$, and $8+$ and sex, let the workers' compensation offset factor be denoted $w k \operatorname{comp}(y r, s x, d u r)$. We have, for durations 0 through 8 , that

$$
\begin{aligned}
\operatorname{avgmba}(y r, s x, a g, d u r)= & \operatorname{avgmba}(y r-1, s x, a g-1, d u r-1) \times(1+\operatorname{COLA}(y r)) \\
& \times(1+w k \operatorname{comp}(y r, s x, d u r)) \times \operatorname{PEadj}(y r, \text { sex }, d u r) .
\end{aligned}
$$

A more careful explanation of the factors, wkcomp ( $y r, s x, d u r$ ) and $\operatorname{PEadj}(y r, s e x, d u r)$, is given later in this document. See the section titled Average PIAs and MBAs for Disabled-Worker Beneficiaries, below. To move duration 8 average benefits to duration 9+ average benefits, both average benefits are given a cost of living adjustment and a post-entitlement adjustment (see section "Post-Entitlement Adjustments"). The resulting duration 9+ average benefit is the weighted average of the adjusted prior year duration 8 and $9+$ average benefits, weighted by the prior year's numbers of beneficiaries in current-pay status for durations 8 and $9+$ respectively.

The only column that does not follow this procedure is the duration 0 column. The duration 0 column corresponds to newly entitled disabled-worker beneficiaries. The following sections describe how average benefits are determined for this group of beneficiaries.

## Average Benefits for Newly Entitled Disabled-Worker Beneficiaries

The potential AIME percentage values for newly entitled disabled-worker benefits (DPAPs) are obtained from the AWARDS subprocess. The two bendpoints of the PIA formula, BP1 and BP2, are indexed by the increase in the average wage index. In 1979 dollars, the values of BP1 and BP2 are $\$ 180$ and $\$ 1,085$ respectively. The AIME dollars between 0 and BP1 are divided into four intervals (each of length $\$ 45$ in 1979 dollars). The AIME dollars between BP1 and BP2 are divided into fourteen intervals (nine of length $\$ 45$ and five of length $\$ 100$, in 1979 dollars). Twelve additional intervals are added beyond BP2 (ten of length $\$ 200$ and two of length $\$ 1,000$, in 1979 dollars).

To determine the average PIA for newly entitled beneficiaries, the DPAP values for each of the thirty intervals of AIME dollars are multiplied by the dollar amounts attributable to each interval (the length of the interval) and by the associated PIA factors. The distribution of prior year disability onset and current year disability onset is taken into consideration. It is assumed that this distribution is 6 months for prior year disability onset and 6 months for current year disability onset. In the formulas below, $j=1$ signifies current year disability onset and $j=2$
signifies prior year disability onset.
Let:

- Wage_Idx $(s x, a g, y r)=\frac{\operatorname{avgwg}(y r-\max (a g-60,1+j))}{\operatorname{avgwg}(1977)}$ for $j=1,2$.
- Cum_COLA $(a g, y r)=\left\{\begin{array}{cc}(1+\operatorname{COLA}(y r-1)) \times(1+\operatorname{COLA}(y r)) & a g<64 \\ \prod_{k=61}^{a g}(1+\operatorname{COLA}(y r-(k-62)) & 64 \leq a g \leq 66 .\end{array}\right.$ Cum $_{-}$COLA $_{2}(a g, y r)=\left\{\begin{array}{cc}1+\operatorname{COLA}(y r) & a g<63 \\ \prod_{k=62}^{a g}(1+\operatorname{COLA}(y r-(k-62)) & 63 \leq a g \leq 66 .\end{array}\right.$
- $w_{j}=\frac{6}{12}=\frac{1}{2}, j=1,2$.
- PIA_factor ${ }_{i}$ represent the PIA factor for interval $i$ (equal to 0.90 for intervals $i=1 . ., 4$, 0.32 for intervals $i=5, \ldots, 18$, and 0.15 for intervals $i=19, \ldots, 30$ ).
- AIME_dollars $i$ represent the length of interval $i$, expressed in 1979 dollars.
- $\quad d p a p_{i}(y r, s x, a g)$ represent the DPAP value for newly entitled disabled workers in year $y r$ whose sex is $s x$ and age is $a g$.

To take into account the workers' compensation offset to disability benefits, administrative data is reviewed, from which a factor is developed and applied to the average award benefit. We now describe how this factor, $\operatorname{facm} 2 p(y r, s x)$ is computed. The 1-A table supplement, for each month in 2011, contains total award PIA and MBA data for disabled workers, by sex, for beneficiaries both non-actuarially reduced and actuarially reduced. Let totmba_DIB_nar ( $y r, s x$ ) and totpia_DIB_nar $(y r, s x)$ be the total annual MBA and PIA respectively for DIBs that are not actuarially reduced as found in the 1-A table. In the historical period 2000-niml we define $f a c m 2 p(y r, s x)$ to be the ratio of the total MBA to the total PIA for those not actuarially reduced. In other words,

$$
\operatorname{facm} 2 p(y r, s x)=\frac{\text { totmba_DIB_nar }(y r, s x)}{\text { totpia_DIB_nar }(y r, s x)} .
$$

In the period $n i$ through $n s+9, f a c m 2 p(y r, s x)$ is defined as follows. Let
$y 1=\operatorname{facm} 2 p(n i m 1$, sex $)$

$$
y 2=(1.0-y 1) / 3.0
$$

$$
f a c m 2 p(y r, s x)=\max \left(y 1-y 2, \min \left(y 1+y 2, f a c m 2 p(y r-1, s x) \times\left(\frac{f a c m 2 p(y r-1, s x)}{\operatorname{facm} 2 p(y r-11, s x)}\right)^{1 / 20}\right)\right)
$$

Projected values of facm2p are therefore held within a delta of y 2 from the last historical year of facm2p.

This value is further adjusted by the variable facm2p_param to reflect the offset amounts that end within the first entitlement year. For the 2012 TR the data suggests this factor should be .31. As a result, for $y r=n i, \ldots, n s+9$,

$$
\begin{aligned}
\text { facm } 2 p(y r, s x) & =x+(1-x) \times 0.31 \\
& =0.31+0.69 \times x .
\end{aligned}
$$

The factor reaches its ultimate value in years $n s+10$ and later.
The preliminary average PIA for newly entitled disabled worker beneficiaries may now be defined. It is equal to

$$
\begin{aligned}
L R_{-} a w d p i a(s x, a g, y r)=\sum_{i=1}^{30} \text { PIA }_{\_} & \text {factor }_{i} \times \text { AIME_dollars }_{i} \times \operatorname{dpap}_{i}(y r, s x, a g) \\
& \times\left(\sum_{j=1}^{2} w_{j} \times \text { Wage_Idx }_{j}(s x, a g, y r) \times \text { Cum }_{-} \text {COLA }_{j}(a g, y r)\right) \\
& \times f a c m 2 p(y r, s x) .
\end{aligned}
$$

Once these average PIAs of newly entitled disabled-worker beneficiaries are computed, their values are filled into the average PIA matrices for duration 0 for the appropriate entitlement age.

## Average PIAs and MBAs for Disabled-Worker Beneficiaries

An overall average PIA of newly entitled disabled worker beneficiaries for each sex and projection year is computed by taking the weighted average of $a w d p i a(s x, a g, y r)$, the weights being the number of disabled workers in current payment status of duration zero. This value is denoted awdpia(sx,yr).

In addition, an overall average PIA and MBA for all disabled worker beneficiaries in currentpayment status is computed by finding the weighted average of the average PIAs for each age in current-pay and duration with the number of people in current pay for each of these ages and durations. The average PIAs were already reduced by a workers' compensation offset factor, as briefly described above; a more careful description is given in this section. To get the average MBAs, we apply a factor that reflects the differences in average MBAs and PIAs for disabled workers, isolating only the trend in cases with an actuarial reduction. We also provide a relatively small reduction to reflect offsets starting and stopping in the year of DI entitlement that are not captured by the current method. There is an additional adjustment to the weighted average disabled worker PIA and MBA amounts in current pay at durations 0 and 1 to account for benefit level differences that are phased out by duration 2.

## Workers' Compensation Offset Factors

For each duration $j=1, \ldots, 7$, and $8+$ and sex we define a workers' compensation factor. This
factor is applied to the average worker PIA matrix as mentioned above. It is denoted $w k \operatorname{comp}(y r, s x, d u r)$. Let $f a c m 2 p_{~} p c t(d u r)$ be defined as in the following table.

| Duration | Cumulative product above set at $\mathrm{x} \%$ of <br> way between original facm 2 p and 1 |
| :---: | :---: |
| 1 | 0.459753 |
| 2 | 0.647513 |
| 3 | 0.730408 |
| 4 | 0.782230 |
| 5 | 0.832050 |
| 6 | 0.857336 |
| 7 | 0.877231 |
| $8+$ | 0.898551 |

Then $w k \operatorname{comp}(y r, s x, d u r)$ is defined so that

$$
\text { facm } 2 p_{-} p c t(d u r)=\operatorname{facm} 2 p(y r-d u r, s x) \times \prod_{j=1}^{d u r}(1+w k \operatorname{comp}(y r, s x, j))
$$

This is an iterative process that first computes $w \operatorname{kcomp}(y r, s x, 1)$ by solving the above equation with $d u r$ set equal to 1 . The remaining factors for higher durations are then computed recursively using the above formula.

Trend in Average MBA to Average PIA
This trend is captured in a factor denoted $\operatorname{Fam} 2 p(y r, s x)$. The 1-A table supplement as of the end of December 2011 contains total in-current pay PIA and MBA data for disabled workers, by sex, for beneficiaries both non-actuarially reduced and actuarially reduced. Let totmba_nar $(y r, s x)$ and totpia_nar $(y r, s x)$ be the total MBA and PIA respectively for DIBs that are not actuarially reduced as found in the 1-A table. Similarly, let totmba_ar ( $y r, s x$ ) and totpia_ar $(y r, s x)$ be the total MBA and PIA respectively for cases that are actuarially reduced.
 the total annual PIA for those not actuarially reduced. In other words,

$$
\operatorname{Fam} 2 p(y r, \operatorname{sex})=\frac{\text { totmba_ar }(y r, \operatorname{sex})+\text { totpia_nar }(y r, \operatorname{sex})}{\text { totpia_ar }(y r, \operatorname{sex})+\text { totpia_nar }(y r, \operatorname{sex})}
$$

In the period $n i$ through $n s+10$, facm $2 p(y r, s x)$ is defined as follows:

$$
\begin{aligned}
& y 1=\operatorname{fam} 2 p(\text { nim1, sex }) \\
& y 2=(1.0-y 1) / 3.0
\end{aligned}
$$

$$
\operatorname{fam} 2 p(y r, s x)=\max \left(y 1-y 2, \min \left(y 1+y 2, \operatorname{fam} 2 p(y r-1, s x) \times\left(\frac{\operatorname{fam} 2 p(y r-1, s x)}{\operatorname{fam} 2 p(y r-11, s x)}\right)^{1 / 20}\right)\right)
$$

The factor reaches its ultimate value in years $n s+10$ and later.

## More Workers' Compensation Offsets

As mentioned above, we also we provide a relatively small reduction to retroactive benefits to reflect offsets starting and stopping in the year of DI entitlement that are not captured by the current method. Based on historical administrative data, we set these factors by duration as follows:

| Duration | Percentage Reduction |
| :---: | :---: |
| 0 | $0.2177 \%$ |
| 1 | $0.1857 \%$ |
| 2 | $0.0695 \%$ |
| 3 | $0.0313 \%$ |
| 4 | $0.0081 \%$ |
| $5+$ | $0 \%$ |

We define wkcomp_red(dur) to be 1 minus these percentage reductions.
By law, disabled workers attaining age 65 are no longer subject to the workers' compensation offset. Therefore, all DI worker benefit levels are adjusted at age 65 to eliminate the effect of the offset.

## Adjustment to Average Benefit Levels at Durations 0 and 1

Average disabled worker PIA and MBAs are adjusted further at durations 0 and 1 by a factor, DI_RI_facs, designed to account for average benefit level changes that occur when beneficiaries come on the rolls retroactively. This is different than projected retroactive payments discussed elsewhere in the documentation. These adjustments are phased out by duration 2, when the vast majority of disabled workers have started receiving benefits.

## Adjustment to Short-Range Average Benefit Levels

Average PIAs are further adjusted by a factor, icp_adj, designed to adjust the long-range aggregate average disabled worker in current pay monthly benefit amount (MBA) to the value projected by short range in the short-range period. This is done for each year of the short-range period and for each sex with the adjustment in year ns linearly phased down to 0 by year ns+10.

## Computation of Average MBA for DI Workers

The disabled worker PIA as presented in the average benefit matrix was already incremented by age and duration using a COLA and a workers' compensation adjustment. The average PIA by year, age and duration, is denoted avgpia (yr,ag, sx, dur). The overall average MBA by year
and sex is the weighted average of avgpia $(y r, a g, s x, d u r) \times \operatorname{Fam} 2 p(y r, s x, d u r)$, the weights being the number of DI workers in current payment status by age, sex, and duration.

## DI Conversions

Disabled-worker beneficiaries convert to retired-worker beneficiary status (called DI conversions) at normal retirement age (NRA). The average DI conversion benefit for a given sex and single age 65 through NRA is the weighted average of the average DI conversion benefits for that sex and age, weighted by the number of people in current pay in each duration. Both the average conversion benefit for each sex and age 65 though NRA and the number of people in current pay for these ages are used in the computation of average retired worker benefits (see subsection (2) below).

## Post-Entitlement Adjustments

As a cohort of beneficiaries age, their average benefit level will likely change for reasons other than just the COLA increase. The two primary reasons for this are post-entitlement work, which could lead to a re-calculation of one's benefit, and a known correlation between greater lifetime earnings and lower mortality rates. The Cost process uses post-entitlement factors by sex and duration to account for the expected dynamic benefit levels. One percent December MBR data from the most recent 10 historical years are used to calculate post-entitlement factors.

For disabled workers we calculate separate factors for those in current pay (ICP) who are younger than 50 and those ICP who are age 50 or older. We use separate factors for each sex and each duration $\left(0-9^{+}\right)$. Initial and Ultimate factors are calculated before being read into the cost program with initial factors set to the most recent 3-year historical average and ultimate factors at the most recent 10-year average.

For retired workers we calculate separate factors for those ICP who converted from DI status and those ICP who came on the rolls as a retired worker. We use separate factors for each sex and each duration $\left(0-12^{+}\right)$. Initial and ultimate factors are calculated before being read into the cost program with initial factors set to the most recent 3-year historical average and ultimate factors at a 10-year average. For females the ultimate post-entitlement factors are adjusted further to reflect the trend that female retired workers are starting to have earnings and benefit levels more similar to men. Therefore female ultimate post-entitlement factors are calculated in the program as $90 \%$ of the male 10 -year average plus $10 \%$ of the female 10 -year average.

All initial factors are phased-in linearly to the ultimate factors over the first 20 years of the projection period (reaching the ultimate values in ni+19).
(2) Retired-Worker Benefits

Retired-Worker Beneficiary Matrix

The number of retired-worker beneficiaries for a given year and sex is provided from subprocess 3.3. Two matrices are provided - one for males and one for females. The structure of each matrix is as follows:

- 10 columns. The first 9 columns are the age at entitlement, ages 62 through 70 . The last column is the number of disabled workers who are projected to convert to retired-worker beneficiary status (DI conversions) at normal retirement age.
- 34 rows. These rows correspond to the age in current pay, ages 62 through 94 and ages 95+.

Note that the entries on the diagonal at ages 62 through 70 (where age in current-pay equals age at entitlement) are the number of new entitlements projected for that year.

## Building the Average Benefit Matrices for Retired Workers

In each projection year, the COST subprocess produces four average benefit matrices. For each sex there are two matrices, an average monthly benefit amount (MBA) matrix and the average primary insurance amount (PIA) matrix. Each matrix has the same structure as the beneficiary matrices. In other words, each matrix is a 34 by 10 matrix whose entries are the average benefit amounts of retired worker beneficiaries whose age in current pay is indexed by the rows and whose original age at entitlement is indexed by the columns. The final column simply gives the average benefits for DI conversions at the various ages in current pay.

The $100 \%$ MBR extract is processed by a side model. This side model computes a starting matrix for year ni-l. This starting matrix contains the four initial benefit matrices, constructed using the most recent data. For a given year of the projection period, the average benefit matrix is updated from its previous year's value incrementing each benefit amount (PIA or MBA) by one year of age and increasing it by a cost of living adjustment (COLA) and by the appropriate post entitlement factor (see section "Post-entitlement adjustments") for males and females. Adjusted age 94 benefits and age 95+ benefits are averaged, based on the respective number of beneficiaries in current pay in the prior year, to get the new average benefit for age 95+. DI conversion benefits are handled similarly, except the average conversion benefit for each age 65 through 66 is combined (as a weighted average) between the DI conversion average benefits computed in subprocess 3.2 and the DI conversions of the corresponding age already receiving benefits (provided by subprocess 3.3).

The entries along the diagonal, the average benefits of newly entitled beneficiaries by age, must still be computed. The remainder of this section will explain how these average benefits are computed. Once these are computed, all entries are computed and the average benefit matrix for the year is complete.

## Average Benefits for Newly Entitled Retired Worker Beneficiaries

The potential AIME percentage (OPAPs) values for newly entitled retired-worker benefits are
obtained from subprocess 4.2. The OPAPs for the projection of average benefits for newly entitled retired-worker beneficiaries are modified by the COST subprocess. The reason is that the age distribution of newly entitled retired worker beneficiaries as determined in the awards sample is used for each projection year, i.e., the age-sex distribution matches that of the sample. These new potential AIME percentages are denoted OPAP1. To incorporate the projected change in the age distribution of projected newly entitled retired-worker beneficiaries for determining their average benefits, we use a "shuttling method." Additional details about the shuttling method are given in Appendix 4.3-1.

Average benefits for newly entitled retired-worker beneficiaries are calculated by sex for single year ages 62 through 69, and ages 70+. The two bendpoints of the PIA formula, BP1 and BP2, are indexed by the increase in the average wage index. In 1979 dollars, the values of BP1 and BP2 are $\$ 180$ and $\$ 1,085$ respectively. The AIME dollars between 0 and BP1 are divided into four intervals (each of length $\$ 45$ in 1979 dollars). The AIME dollars between BP1 and BP2 are divided into fourteen intervals (nine of length $\$ 45$ and five of length $\$ 100$, in 1979 dollars). Twelve additional intervals are added beyond BP2 (ten of length $\$ 200$ and two of length $\$ 1,000$, in 1979 dollars).

To determine the average PIA for newly entitled beneficiaries, the OPAP1 values for each interval of AIME dollars are multiplied by the dollar amounts attributable to each interval (the length of the interval). More precisely, let

- $\quad$ PIA_factor $_{i}$ be the PIA factor for subinterval $i$ (equal to 0.90 for intervals $i=1,4,0.32$ for intervals $i=4, \ldots, 18$, and 0.15 for intervals $i=19, \ldots, 30$ ), AIME_dollars $_{i}$ be the length of subinterval $i$,
- $\operatorname{opap1}_{i}(y r, s x, a g)$ be the modified PAP value for retired workers newly entitled in year $y r$ whose sex is $s x$ and whose age is $a g$.
- $\quad w f f(y r, s x$, age $e)$ be a reduction factor to account for the Windfall Elimination Provision. ${ }^{57}$
- Wage_Idx $(a g, y r)=\frac{\operatorname{avgwg}(y r-(a g-62))}{\operatorname{avgwg}(\text { nbase }-2)}$

Then the average PIA for these newly entitled retired worker beneficiaries is equal to

$$
\begin{array}{r}
L R_{-} \text {awdpia }(s x, a g, y r)=\text { Wage_Idx }(a g, y r) \times w f f(y r, s x, a g e) \\
\times \sum_{i=1}^{30} \text { PIA }_{-} \text {factor }_{i} \times \text { AIME_dollars }_{i} \times o p a p 1_{i}(y r, s x, a g) .
\end{array}
$$

This formula incorporates the fact that the PAP values are the estimated cumulative distribution

[^42]of AIME dollars. The average award MBA for a worker beneficiary is then the average newly entitled PIA multiplied by the appropriate actuarial reduction factors and delayed retirement credits, $\operatorname{arfdrc}(a g, y r)$, based on age at initial entitlement.

Once these average benefits of newly entitled retired-worker beneficiaries are computed, their values are filled into the appropriate average benefit matrices.

For summary purposes, the COST subprocess computes an average PIA and MBA for all male and female newly entitled retired-worker beneficiaries. These are just the respective weighted averages of the average PIAs and MBAs by age and sex, the weights being the number of newly entitled retired-worker beneficiaries. Similarly, average PIA and MBA for all retired worker beneficiaries in current pay are computed, by sex.

## Adjustment to Average Benefit Levels at Durations 0 and 1

Average retired worker PIA and MBAs are adjusted at durations 0 and 1 by a factor, OA_RI_facs, designed to account for average benefit level changes that occur when beneficiaries come on the rolls retroactively. This is different than projected retroactive payments discussed elsewhere in the documentation. These adjustments are phased out by duration 2, when the vast majority of retired workers have started receiving benefits.

## Adjustment to Short-Range Average Benefit Levels

Average PIAs are further adjusted by a factor, icp_adj, designed to be the factor that adjusts the long-range aggregate average retired worker in current pay monthly benefit amount (MBA) to the value projected by short range in the short-range period. This is done for each year of the short-range period and for each sex with the adjustment in year ns linearly phased down to 0 by year ns+10.

## (3) Annualizing Benefits

Scheduled benefits are calculated by trust fund and projection year. For each year, scheduled benefits for each trust fund are found by adding up the appropriate benefit categories. This section applies to all benefit amounts except the "dual entitlement excess amount." If a retired worker beneficiary is also entitled to spouse or widow(er) benefits and the auxiliary benefits are greater, than the amount by which the auxiliary benefit exceeds the worker's MBA is the dual entitlement excess amount. The four categories of excess amounts (dually entitled wives, widows, husbands, and widowers) are projected separately. More information is found in subsection (4).

The first step is to determine average benefits by category. A list of the beneficiary categories follows. An odd category number refers to the male account holder, while an even category number refers to the female account holder. As an example, for category 4, the aged married spouse is the aged married husband of the retired female worker.

| Category <br> $\#$ (cat) | Beneficiary Type |
| :--- | :---: |
| Old-Age Insurance Beneficiaries |  |
| $1 \& 2$ | Retired worker (includes DI conversions) |
| $3 \& 4$ | Aged married spouse |
| $5 \& 6$ | Aged divorced spouse |
| $9 \& 10$ | Young spouse with child |
| $11 \& 12$ | Child $<18$ |
| $13 \& 14$ | Student child |
| $15 \& 16$ | Disabled adult child |
| Disability Insurance Beneficiaries |  |
| $17 \& 18$ | Disabled worker |
| $19 \& 20$ | Aged married spouse |
| $21 \& 22$ | Aged divorced spouse |
| $25 \& 26$ | Young spouse with child |
| $27 \& 28$ | Young child |
| $29 \& 30$ | Student child |
| $31 \& 32$ | Disabled adult child |
| Survivors Insurance Beneficiaries |  |
| $33 \& 34$ | Aged married widow |
| $35 \& 36$ | Aged divorced widow |
| $39 \& 40$ | Young married disabled widow |
| $41 \& 42$ | Young divorced disabled widow |
| $43 \& 44$ | Aged parent |
| $45 \& 46$ | Young married widow with child |
| $47 \& 48$ | Young divorced widow with child |
| $49 \& 50$ | Young child |
| $51 \& 52$ | Student child |
| $53 \& 54$ | Disabled student child |
| $55 \& 56$ | Lump sum death benefit (\$255) |

For the worker categories, the prior sections describe the computation of average benefit levels at the end of each year. For a specific auxiliary beneficiary category, the average monthly benefit at the end of each year (avgben) is determined by multiplying:

- The linkage factor (the assumed relationship between an auxiliary beneficiary's benefit and the corresponding worker benefit) by
- The average monthly benefit of the primary account holder (the worker beneficiary account on which the auxiliary beneficiary is entitled to receive the benefit).

In order to annualize benefits for each beneficiary category, two values are used. The beginning-of-year average benefit equals the average monthly benefit in December of the prior year. The end-of-year benefit equals the monthly average benefit of the worker beneficiary for December
of the current year without the cost of living adjustment (COLA). The average benefit by category for each month is found by taking a weighted average of the benefits at the beginning and end of the year, the weights being the fractions of the year the prior and current year's beneficiaries have been exposed. Since the new COLA takes effect in December of the year, the new COLA must be reflected in the December benefits. If $c p(c a t, y r)$ is the number of beneficiaries in category cat for year $y r$, and $\operatorname{avgben}($ cat,yr) is the average monthly benefit for category cat for year $y r$, then the amount of aggregate benefits paid in year $y r$ is given by the formula:

$$
\begin{aligned}
& \operatorname{AggBen}(y r, c a t) \\
& =\sum_{i=0}^{11}\left[\frac{(12-i)}{12} \times c p(c a t, y r-1) \times \operatorname{avgben}(c a t, y r-1)+\frac{i}{12} \times c p(c a t, y r) \times \operatorname{avgben}(c a t, y r)\right] .
\end{aligned}
$$

For all beneficiary categories expect for the lump-sum benefit, the aggregate benefit amount is increased by the retroactive payments that were projected to be paid during the year. See section (5), below.
(4) Dually Entitled Beneficiaries and Benefits

## Number of Dually Entitled Beneficiaries

There are four categories of dually entitled beneficiaries. They are the dually entitled wives (1), widows (2), widowers (3), and husbands (4). The number of dually entitled husbands is very small (currently less than $0.05 \%$ of all dually entitled beneficiaries and are expected to remain at this level in the future). As a result, the number of dually entitled husbands and their benefits are not projected. To project the number of dually entitled beneficiaries for the other three categories we use a regression equation with one coefficient each, $a_{1}^{(k)}$ :

$$
\operatorname{PctExp}^{(k)}(y r)=a_{1}^{(k)} \frac{\operatorname{PIA}(\mathrm{yr}, \mathrm{M})-\operatorname{PIA}(\mathrm{yr}, \mathrm{~F})}{\operatorname{PIA}(\mathrm{yr}, \mathrm{M})}+c^{(k)}(y r)
$$

$(\mathrm{k}=1,2,3)$ project the percentage of the exposed population entitled to wife (1), widow (2), and widower (3) benefits.

PIA(yr,sex) is the average PIA of newly entitled retired worker beneficiaries by sex, wageindexed to the year of the sample and $\operatorname{PctExp}(\mathrm{yr})$ is the percentage of the entitled population in the category that is dually entitled. The regression alone, however, does not take into account expected future comparative work history changes that will affect dual entitlement populations. We use an "add factoring" method with variable $c^{(k)}(y r)$ to account for this.

To derive $c^{(k)}(y r)$,suppose that $u l t^{(k)}$ is the value obtained from the regression equation without
add-factoring in the final year of the projection period. The regression yields a slope of $a_{1}^{(k)}$ and a y-intercept of $b^{(k)}$. Only the dually entitled widower regression equation warrants the usage of a non-zero y-intercept. Therefore

$$
u l t^{(k)}=a_{1}^{(k)} \frac{\operatorname{PIA}(n i+74, \mathrm{M})-\operatorname{PIA}(n i+74, \mathrm{~F})}{\operatorname{PIA}(n i+74, \mathrm{M})}+b^{(k)}
$$

Let $\operatorname{targ}^{(k)}$ be the target value we estimate for the final year of the projection period. Let phaseyrs be the number of years it takes to fully phase in the target value. Then we have

$$
c^{(k)}(y r)=\min (y r-2010, \text { phaseyrs }) \times \frac{\text { targ }^{(k)}-u l t^{(k)}}{\text { phaseyrs }}
$$

The following table displays the coefficients, target values, and phase-in years for each type of beneficiary.

| $k$ | Type | $a_{1}^{(k)}$ | $b^{(k)}$ | Target Value <br> targ $^{(k)}$ | Add-factoring Phase-in <br> Years <br> phaseyrs <br> 1 Wife |
| :--- | :--- | :---: | :---: | :---: | :---: |
| 2 | Widow | 0.91177 | 0.0 | 0.22 | 40 |
| 3 | Widower | -0.03825 | 0.05909 | 0.06 | 35 |

In the above equations, the average PIA of newly entitled beneficiaries by sex has already been computed (see subsection (2) above).

## Average Excess Amount for Dually Entitled Beneficiaries

The projection of the average excess amounts for two categories of dually entitled beneficiaries (wives and widows) is similar to that of the number of dually entitled beneficiaries. The structure of the equations used to project these amounts is similar to the equations used to project the percentage exposures.

The equations used to project the average excess amount each have two terms. Each equation $k$ has one coefficient, $b_{1}^{(k)}$, calculated in a side model for the cost process based on historical series of the other terms in the equations and an add factor adjustment (denoted " $c^{(k) \text { ") similar to the }}$ process for the number of dually entitled beneficiaries. A target value in the $75^{\text {th }}$ year of the projection period is used in deriving the "add-factor" adjustment. The two equations
$\operatorname{AvgExcPct}^{(k)}(y r)=b_{1}^{(k)} \frac{\operatorname{PIA}(\mathrm{yr}, \mathrm{M})-\operatorname{PIA}(\mathrm{yr}, \mathrm{F})}{\operatorname{PIA}(\mathrm{yr}, \mathrm{M})}+c^{(k)}(y r)$
( $k=1,2$ ) project the average excess benefit amounts of wife (1) and widow (2) beneficiaries as a percentage of the male retired worker benefit.

The derivation of $c^{(k)}(y r)$ is similar to the case of the exposure percentages as described above. Suppose that $u l t^{(k)}$ is the value obtained from the regression equation without add-factoring in the final year of the projection period. Therefore

$$
u l t^{(k)}=b_{1}^{(k)} \frac{\operatorname{PIA}(n i+74, \mathrm{M})-\operatorname{PIA}(n i+74, \mathrm{~F})}{\operatorname{PIA}(n i+74, \mathrm{M})}
$$

Let $\operatorname{targ}{ }^{(k)}$ be the target value we estimate for the final year of the projection period. Let phaseyrs be the number of years it takes to fully phase in the target value. Then we have

$$
c^{(k)}(y r)=\min (y r-2010, \text { phaseyrs }) \times \frac{\text { targ }^{(k)}-u l t^{(k)}}{\text { phaseyrs }}
$$

The table below shows the regression coefficients and other relevant adjustments in the 2012 Trustees Report.

| $k$ | Type | $b_{1}^{(k)}$ | Targeted Value (2086) in <br> Nominal Dollars <br> targ $^{(k)}$ | Add-factoring <br> Phase-in Years <br> phaseyrs |
| :--- | :--- | :--- | :---: | :---: |
| 1 | Wife | 0.43279 | 3,619 | 38 |
| 2 | Widow | 1.20086 | 9,650 | 35 |

The average excess amount of widower beneficiaries is estimated to be a fixed percentage (46\%) of the average excess amount of widow beneficiaries. That is, AvgExcPct ${ }^{(3)}(y r)=0.46 \times \operatorname{AvgExcPct}^{(2)}(y r)$.

## Annualizing Excess Amounts

The process to annualize excess amounts is very similar to the process for annualizing auxiliary benefits.

For each dual entitlement category, the number of beneficiaries is simply $c p(y r, c a t)=\operatorname{PctExp}^{(c a t)}(y r) \times \operatorname{ExposedPop}^{(c a t)}(y r)$. With this method, however, no linkage factor is used. Instead, the projected average excess amount, as explained above, is used. Therefore,

$$
\begin{aligned}
& \text { AggExcess }(y r, c a t) \\
& =\sum_{i=0}^{11}\left[\frac{(12-i)}{12} \times c p(c a t, y r-1) \times A v g E x c A m t^{(c a t)}(y r-1)+\frac{i}{12} \times c p(c a t, y r) \times \operatorname{AvgExcAmt}^{(c a t)}(y r)\right] \text {. }
\end{aligned}
$$

## (5) Retroactive Payments

Frequently, beneficiaries start receiving payments later than their actual entitlement date, such that they receive a "catch-up" lump-sum amount for the time delay, in addition to regular monthly benefits going forward. These lump-sum amounts, which we call retroactive payments, apply for all beneficiary categories (except for the one-time $\$ 255$ death benefit) but are more significant for disabled workers because of the frequent and sometimes lengthy time lag in getting an allowance on their application, as well as the 12 months of retroactivity allowed at the time of benefit filing. This section discusses how retroactive benefit payments are projected for all beneficiary categories.

## Disabled Workers

For each age and sex the DI area (subprocess 3.2) provides two cumulative distributions (one initial and one ultimate), by duration, of incurred but not reported cases. Denote this by $i b n r$ ( $y r$, sex, age, dur) where for years ni-10 to 2008 ibnr factors are set to the initial distribution, for years 2018 and after ibnr factors are set to the ultimate distribution, and for years 2009 to 2017 we linearly interpolate. The number of disability beneficiaries who will eventually receive benefits (by age, sex, and duration) is
$\operatorname{dibce}(y r, \operatorname{sex}$, age,$d u r)=\operatorname{dibcp}(y r, \operatorname{sex}$, age,$d u r) / \operatorname{ibnr}(y r-d u r, \operatorname{sex}, \max (15$, age $-d u r), d u r)$.
The associated frequency distribution of incurred but not reported cases is
$i b n r_{\_}$freq (yr, sex, age, dur). In other words, we have
$i b n r_{-}$freq $(y r$, sex, age, 0$)=\operatorname{ibnr}(y r$, sex, age, 0$)$ for duration 0 and
$i b n r_{-}$freq $(y r$, sex, age, dur $)=\operatorname{ibnr}(y r-d u r$, sex, age, dur $)-i b n r(y r-d u r$, sex, age,dur -1$)$ for higher durations, $1 \leq d u r \leq 9$ and $10+$.

Let $d u r$ be a duration, 0 through 9 or 10+. Define

- Cum_COLA(dur) $=\prod_{j=0}^{d u r}(1+\operatorname{COLA}(y r-j))$.
- For $i=0, \ldots, 10$, Num_Months $(i)=\left\{\begin{array}{cc}2 & d u r=0 \\ 5 & d u r>0 \text { and } i=0 \\ 12 & d u r>0 \text { and } 0<i<d u r \\ 6 & d u r>0 \text { and } i=d u r\end{array}\right.$

Then the aggregate retroactive payments for disabled workers, in millions, are defined to be
Retro_DIB(sex,yr)

$$
\left.=\sum_{a g e=20}^{66} \sum_{d u r=0}^{10} \sum_{i=0}^{\text {dur }} \text { dibpia(age, sex, dur }\right) \times \text { wkcomp_red }(d u r) \times \frac{\operatorname{dibce}(y r-d u r, \text { sex, age, } 0)}{10^{6}} \times \frac{\text { Num } \quad \text { Months }(i) \times i b n r_{-} \text {freq }(\text { sex, age, dur }}{\text { Cum }_{-} \text {COLA }(d u r)}
$$

This is simply added to the disabled worker benefit category by year and sex.

## Retired Worker Beneficiaries

Retired worker beneficiaries are assumed to have, on average, 0.7 months of retroactive payments. Hence
retro_OAB $($ sex, $y r)=\sum_{\text {age }=62}^{70} \frac{0.7 \times \frac{\operatorname{oabicp}(y r, \text { sex, age, age })}{1000} \times o a b m b a(y r, \text { sex, age, age })}{1+\operatorname{COLA}(y r)}$.
In the above formula, oabicp ( $y r$, sex, age, age) is the number of newly entitled beneficiaries at age equal to age (age in current pay equals age at entitlement equals age) and $o a b m b a(y r$, sex, age, age) is the corresponding average benefit. The aggregate retroactive benefits for retired worker beneficiaries are simply added to the retired worker benefit category by year and sex.

## Auxiliary Beneficiary Categories

Retroactive payments for auxiliary beneficiaries are treated as a loading of the aggregate annual benefits by auxiliary category. That is, each auxiliary benefit category has a loading factor to represent retroactive payments on top of regular monthly benefits, and the aggregate annual benefits by category are increased by this loading factor.
(6) Aggregate Scheduled Benefits (BEN)

Aggregate benefits by trust fund, $B E N(t f, y r)$, are computed as follows. For each year of the 75year long-range projection period, the aggregate benefits by category (including retroactive payments, as described above) are summed up to give the annual scheduled benefit levels by trust fund. In the short-range period, the long-range values are overridden by the values estimated by the short-range office. The difference between long-range scheduled benefits and short-range benefits in the $10^{\text {th }}$ year of the short-range period is called the scheduled benefits adjustment. In the 10 years after the end of the short-range period, the long-range scheduled benefits are adjusted by linearly grading the scheduled benefits adjustment to zero over the 10year period. From the $20^{\text {th }}$ year forward, the projection is the pure long-range value.

## iii. Equation 4.3.3-Taxation of Benefits (TAXBEN)

The short-range office provides taxation of benefits levels by trust fund in the short-range period . These implicitly give, for each year, an estimated taxation of benefits factor, by trust fund,
equal to the estimated taxation of benefits as a percentage of benefits scheduled to be paid. The long-range office projects these factors independently for every year of the projection period, also by trust fund. (See subprocess 4.1.) The difference in the factors between the two offices at the end of the short-range period is phased out linearly over the next ten years. The long-range projection of taxation of benefits is estimated by multiplying the projected taxation of benefits factors by the benefits scheduled to be paid, by trust fund. If taxben_factor $(t f, y r)$ is the percentage of scheduled benefits for the year, by trust funds, estimated to be collected as taxation on benefits, then

$$
\operatorname{TAXBEN}(t f, y r)=\text { taxben_factor }(t f, y r) \times B E N(t f, y r)
$$

for $y r \geq n s+10$.

## iv. $\quad$ Equation 4.3.4-Administrative Expenses (ADM)

Administrative expenses are estimated separately by trust fund. In the short-range period, the short-range office provides the estimates of administrative expenses by trust fund. Thereafter, administrative expenses are computed by multiplying the previous year's administrative expenses by three factors: annual changes in total beneficiaries, annual changes in AWI, and one minus annual productivity growth. As a formula, if $\operatorname{ticp}(t f, y r)$ is the total estimated number of beneficiaries in current-pay status by trust fund and year, $A W I(y r)$ is the average wage index in year $y r$, and prod is the ultimate assumed annual growth in productivity, then

$$
\begin{aligned}
& A D M(t f, y r)= A D M(t f, y r-1) \times[t i c p(t f, y r) / t i c p(t f, y r-1)] \times[A W I(y r) / A W I(y r-1)] \\
& \times(1-p r o d) \\
& \text { for } y r>n s .
\end{aligned}
$$

## v. Equation 4.3.5-Railroad Interchange (RR)

Railroad interchange is disaggregated by trust fund and projection year. The long-range office does a projection for each year in the 75 -year period. In the short-range period (first 10 years of the 75-year projection period), the short-range office provides the estimates of railroad interchange by trust fund and the long-range projection is overridden in these years. Over the next five years of the projection period, the estimate of the railroad interchange is a linear interpolation between the short-range projection at the end of the short-range period and the long-range projection five years hence. During the final 60 years of the projection period, the projection is as estimated by the long-range office.

By trust fund, the total cost in calendar year $y r, r r_{-} \operatorname{cost}(t f, y r)$ is the sum of railroad benefits and railroad administrative expenses, less the sum of railroad contributions and railroad taxation of benefits. By trust fund, the railroad interchange component of total cost is then equal to

$$
R R(t f, y r)=\left[0.25 \times r r_{-} \operatorname{cost}(t f, y r-2)+0.75 \times r r_{-} \operatorname{cost}(t f, y r-1)\right] \times[1+1.25 \text { yield }(y r)] .
$$

Note that the railroad cost is increased by the yield rate on the combined OASDI trust funds for year $y r$. This formula takes into account the fact that that there is a delay from the end of the fiscal year to the time of valuation.

The total cost in year $y r$ is broken down in to four components: railroad benefits in year $y r$, railroad administrative expenses in year $y r$, railroad contributions in year $y r$, and railroad taxation of benefits in year $y r$.

Projections of numbers of newly entitled retired workers are determined by analyzing the ratio of new entitlements to previous levels of railroad employment using 1997-2009 new entitlement data in the analysis. After initial entitlement, a mortality rate of $5.8 \%$ for 2010 is assumed based on analysis of recent Railroad Retirement Board financial interchange data, with mortality assumed to improve thereafter. For projections of newly entitled disabled workers a similar trend analysis based on prior employment is used. A "mortality" rate (deaths plus recoveries plus conversions to retired worker benefits) is determined using Railroad Retirement Board (RRB) data, with the rate assumed constant thereafter.

Assuming a 90/10 male/female split, the average benefit level for an OASI railroad worker is calculated as a ratio to the average OASI retired worker benefit. This ratio is constant throughout the projection period and is derived by comparing MBR and Railroad Board data. Additionally a constant loading factor based on the same data is applied to aggregate worker benefits to determine the aggregate benefit amounts for auxiliary OASI beneficiaries. This same approach is used to determine similar constants for DI railroad benefits. The aggregate disabled worker railroad benefits (and beneficiaries) are estimated in the same way.

It is assumed that the ratio of OASI taxation of benefits to OASI benefits and DI taxation of benefits to DI benefits are both the same for railroad taxation of benefits. The railroad taxation of benefits is estimated by multiplying the railroad benefits by these ratios.

Administrative expenses for railroad are computed separately by trust fund. They are set at levels determined by short range in the short-range period. For years ni+10 to nf, they are computed similarly to OASDI administrative expenses. Administrative expenses in yr-1 are multiplied by (a) the change in the total number of worker beneficiaries, (b) the annual change in average wage, and (c) one minus the ultimate productivity growth.

Railroad contributions are estimated, by trust fund, to be total railroad employment, multiplied by average railroad earnings, multiplied by the combined OASDI employer/employee tax rate. Railroad earnings are assumed to grow with the increase in the average wage index, and railroad employment is assumed to decrease over time, both of which are in line with the Railroad Retirement Board's own "most likely" projections.

## vi. Equation 4.3.6 - Interest Income (INT)

In the short-range period, the projection of interest income by trust fund is provided by the short-
range office. In each year of the short-range period, the annual yield rate is defined as the ratio of interest earned by a fund to the average level of assets held by the fund during the year.

The ultimate annual yield rate on each trust fund is equal to the nominal yield, which is the real interest rate increased for inflation. As a formula,

$$
\text { ultimate yield rate }=(1+\text { real interest rate }) \times(1+\text { inflation rate })-1 .
$$

To get the yield rate for each year between the end of the short-range period (ns) and 5 years later, ns +5 , when the ultimate yield rate is assumed to be reached, the program linearly interpolates between the values for years ns and ns +5 .

The projection of interest income in a given year is the yield rate for that year multiplied by the average level of assets. As a formula,

$$
I N T(t f, y r)=y i e l d(t f, y r) \times a v g_{-} \operatorname{assets}(t f, y r) .
$$

The amount of assets in a trust fund at the end of a given year is estimated from the level of assets at the beginning of the year by:

- Increasing the level for the tax contributions and taxation of benefits income received during the year (each exposed to the point in the year in which they are estimated to be received, on average), and
- Decreasing the level for scheduled benefits, railroad interchange, and administrative expenses paid during the year (each exposed to the point in the year in which they are estimated to be disbursed, on average).

For all years of the projection period, tax contributions are given an exposure of 0.517 , taxation of benefits are given an exposure of 0.625 , railroad interchange is given an exposure of $0.58 \overline{3}$, and administrative expenses are given an exposure of 0.5 . For scheduled benefits, separate OASI and DI exposures are determined through a side model. The exposure, ben_exp(yr), is larger than 0.5 in the early years of the projection period for both trust funds, whereas in later years OASI benefit exposures fall below 0.5 with DI remaining above 0.5 . The reason is that in the past, benefits were always paid on the $3^{\text {rd }}$ of each month. Now benefits are paid out throughout the month, based on the birth date of the beneficiary. The reason for the differences between trust funds is that benefits are paid on the third of the month (exempting check cycling ${ }^{58}$ ) for a higher proportion of DI beneficiaries due primarily to (1) concurrent receipt of SSI benefits, or (2) state payment of Medicare premiums. The average assets held by the trust funds for a given year is estimated by the formula

[^43]\[

$$
\begin{aligned}
\operatorname{avg} \_\operatorname{assets}(t f, y r)= & \operatorname{ASSETS}_{B O Y}(t f, y r)+0.517 \times \operatorname{CONTRB}(t f, y r) \\
& +0.625 \times T A X B E N(t f, y r)-b e n_{-} \exp (t f, y r) \times B E N(t f, y r) \\
& -0.58 \overline{3} \times R R(t f, y r)-0.5 \times A D M(t f, y r) .
\end{aligned}
$$
\]

vii. Equations 4.3.7, 4.3.8 and 4.3.9 - Annual Values

The annual income rate for a trust fund is computed as the sum of payroll tax contributions plus taxation of benefits as a percentage of taxable payroll.

$$
A N N_{-} I N C_{-} R T(t f, y r)=\frac{C O N T R B(t f, y r)+T A X B E N(t f, y r)}{\text { payroll }(y r)} .
$$

The annual cost rate for a trust fund is computed as the total cost of providing scheduled benefits from that fund as a percentage of taxable payroll. If

$$
\operatorname{COST}(t f, y r)=B E N(t f, y r)+R R(t f, y r)+A D M(t f, y r)
$$

then

$$
A N N_{-} C O S T_{-} R T(t f, y r)=\frac{\operatorname{COST}(t f, y r)}{\operatorname{payroll}(y r)}
$$

The trust fund ratio measures the amount of beginning of year assets that can be used to pay total cost. It is expressed as a percentage:

$$
\operatorname{TFR}(t f, y r)=\frac{\operatorname{ASSETS}_{B O Y}(t f, y r)}{\operatorname{COST}(t f, y r)}
$$

viii. Equations 4.3.10, 4.3.11, 4.3.12, and 4.3.13-Summarized Values

Present values of cash flows during the year are computed using the yield rate on the combined OASDI trust fund for that year. Each component of trust fund operations is exposed, with interest, to the point in the year in which, on average, it is received or disbursed. These exposure levels, ben_exp(tf,yr), are the same as described above. These exposed levels are then discounted to January 1 of the year of the Trustees Report, ni. If yield $(j)$ is the annual yield rate on the combined OASDI trust funds for year $j$ and $v(y r)$ is the discounting factor for the year, then

$$
v(y r)=\prod_{j=n i}^{y r} \frac{1}{[1+\operatorname{yield}(j)]} .
$$

For a given year, and trust fund,

$$
\begin{aligned}
P V \_T A X(t f, y r) & =(1+0.517 \times \text { yield }(y r)) \times T A X(t f, y r) \times v(y r), \\
P V \_T A X B E N(t f, y r) & =(1+0.625 \times y \operatorname{lield}(y r)) \times \operatorname{TAXBEN}(t f, y r) \times v(y r), \\
P V \_B E N(t f, y r) & =(1+\text { ben_exp }(t f, y r) \times y i e l d(y r)) \times B E N(t f, y r) \times v(y r), \\
P V \_R R(t f, y r) & =(1+0.58 \overline{3} \times y i e l d(y r)) \times R R(t f, y r) \times v(y r),
\end{aligned}
$$

$$
\text { and } \quad P V_{-} A D M(t f, y r)=(1+0.5 \times \operatorname{yield}(y r)) \times A D M(t f, y r) \times v(y r)
$$

The target fund for a year is next year's cost. Its present value is computed as

$$
P V \_T A R G(t f, y r)=[B E N(t f, y r+1)+R R(t f, y r+1)+A D M(t f, y r+1)] \times v(y r),
$$

Taxable payroll is exposed to the middle of the year when computing present values:

$$
P V_{\_} P A Y R O L L(y r)=(1+0.5 \times \operatorname{yield}(y r)) \times \operatorname{payroll}(y r) \times v(y r) .
$$

We also define

$$
P V_{-} I N C(t f, y r)=P V_{-} T A X(t f, y r)+P V_{\_} T A X B E N(t f, y r)
$$

and

$$
P V_{-} C O S T(t f, y r)=P V_{-} B E N(t f, y r)+P V_{-} R R(t f, y r)+P V_{-} A D M(t f, y r) .
$$

Summarized rates are calculated using beginning of period assets and a target fund. Let $\mathrm{yr}_{1}=$ the first year of the valuation period and $\mathrm{yr}_{2}=$ the ending year of the valuation. Then the summarized income rate is:

$$
S U M M_{-} I N C_{-} R T\left(t f, y r_{1}, y r_{2}\right)=\frac{\operatorname{ASSETS}_{B O Y}\left(t f, y r_{1}\right)+\left(\sum_{j=y y_{1}}^{y r_{2}} P V_{-} I N C(t f, j)\right)}{\sum_{j=y y_{1}}^{y r_{2}} P V_{-} \operatorname{PAYROLL}(j)} .
$$

The summarized cost rate is similarly computed:

$$
S U M M_{-} C O S T_{-} R T\left(t f, y r_{1}, y r_{2}\right)=\frac{\left(\sum_{j=y y_{1}}^{y r_{2}} P V_{-} \operatorname{COST}(t f, j)\right)+P V_{-} T A R G\left(t f, y r_{2}\right)}{\sum_{j=y_{r_{1}}}^{y r_{2}} P V_{-} \operatorname{PAYROLL}(j)} .
$$

The 75-year actuarial balance is computed for a period beginning January 1 of the Trustees Report year, ni. It includes both beginning of period assets and a target fund. Therefore,
$A C T B A L_{75 y r}(t f)=S U M M_{-} I N C_{-} R T(t f, n i, n i+74)-S U M M_{-} C O S T T_{-} R T(t f, n i, n i+74)$.
In general, an actuarial balance may be computed for any given subperiod of the projection period. In general, actuarial balances for a subperiod beginning on January 1 of year ni and continuing through the end of year $y r$ are computed using

$$
A C T B A L_{n i, y r}(t f)=S U M M_{-} I N C_{-} R T(t f, n i, y r)-S U M M_{-} C O S T_{-} R T(t f, n i, y r) .
$$

The unfunded obligation of a trust fund for a given period is the excess of the present value of the net cash deficits for each year of that period over the trust fund balance at the beginning of the period. The unfunded obligation for the period beginning on January 1 of year $n i$ and continuing through the end of year $y r$ is computed using

$$
U N F_{-} O B L(t f, y r)=\sum_{j=n i}^{y r}\left[P V_{-} \operatorname{COST}(t f, j)-P V_{-} I N C(t f, j)\right]-\operatorname{ASSETS}_{B O Y}(t f, n i) .
$$

## ix. Equation 4.3.14-Closed Group Unfunded Obligation

The closed group is defined as individuals who attain specified ages in the first year of the projection period (ni). The Statement of Social Insurance displays unfunded obligations for closed groups (1) attaining 15 or later in 2012, (2) attaining 62 or older in 2012, and (3) attaining 15 to 61 in 2012. For each year of the projection period, closed group calculations attribute a portion of the items in equations 4.3 .1 through 4.3.6 to individuals falling in the defined closed group. The calculation of the closed-group unfunded obligation, then, uses the equation above but only considering the present values of cost and income attributable to the closed group.

The following information, developed elsewhere in the "Cost" process, is used for developing closed group unfunded obligation amounts:

- Total number of workers and total taxable earnings by single year of age 15-74 and sex, years 1951 through $n f$, updated yearly
- Taxable payroll, years $n i$ through $n f$, updated yearly
- Payroll tax income, years $n i$ through $n f$, updated yearly
- Income from taxation of benefits, years ni through $n f$, updated yearly
- Scheduled benefits by beneficiary category, years $n i$ through $n f$, updated yearly
- Railroad interchange, years $n i$ through $n f$, updated yearly
- Administrative expenses, years $n i$ through $n f$, updated yearly
- Yield rate on the combined OASDI trust funds, years $n i$ through $n f$, updated yearly
- Population counts for all retired workers, spouses, divorced spouses, and widow(er)s by year, sex, and age 95-119 (read in as a percentage of 95+ counts)
- Distribution of assumed age differentials between aged spouses and workers ranging from -12 years to 15 years seniority for the worker by sex of the beneficiary, age of
the beneficiary 62-74, and marital status
- Distribution of assumed age differentials between aged widow(er)s and deceased workers from -6 years to +12 years

It is important to note that, for dependent beneficiaries, the age of the worker, on whose account the benefits are based, determines whether that beneficiary would fall in the closed group. For instance, if the closed group were defined as individuals attaining age 15 or later in 2012, a 3-year-old minor child receiving benefits in 2012 on the account of a retired worker aged 63 would be considered part of this closed group because the account holder was at least age 15 in 2012. The following describes how the various components of income and cost are allocated to the defined closed group in question:

## Payroll Tax Contributions

Closed group taxable payroll is defined as the percentage of OASDI taxable payroll attributable to the closed group in question. An input file of closed group payroll factors, containing these percentages by year from 2012 through 2111, is used by the cost program to compute payroll tax contributions attributable to the closed group. For each year, the closed group payroll factors are determined as follows:

- $\quad$ The number of projected workers by single year of age (ages 1-99) and sex are multiplied by the associated average earnings by age/sex.
- Then, the portion of total taxable earnings attributable to the closed group is calculated.

For each year of the projection period, the number of workers and average taxable earnings by single year of age and sex are determined as follows:

- For ages 15-74, the number of projected workers comes directly from Economics group projections, and the average earnings by age and sex comes directly from the AWARDS subprocess.
- For ages $1-14$, the number of projected workers is obtained by averaging the percentage of workers at each age relative to the total 1-14 age group, using 17 years of earnings data (1991-2008) in the averaging calculations. Average taxable earnings for ages 1-14 are obtained by analyzing historical 1991-2008 data of the average earnings at each age relative to the age 15 average earnings, and judgmentally assigning a ratio (to age 15 average earnings) for each age.
- For each single year of age from 75 through 99 and sex, the number of workers is projected each year by multiplying (1) the ratio of those workers in 2008 to the projected population of that group in 2008 and (2) the projected population of that group. Then, the resulting estimated workers are adjusted by an equivalent percentage to match the total number of projected workers aged 75 and later, as provided by the Economics group. This process is done separately by sex. To obtain the average taxable earnings for single years of age 75-99, ratios of average earnings by age 75-99 to overall average earnings
for all ages are computed for each age 75-99, for earnings years 1991 through 2008. These ratios by age are then averaged for all 18 years, from which earnings ratios to overall average earnings are developed judgmentally. This process is done separately by sex.


## Benefits

Methodologies for computing benefits attributable to the closed groups differs among benefit categories, as described below:

## Retired Workers

For each age in current pay, the number of beneficiaries is multiplied by the corresponding average benefit amount across all ages of entitlement. The same applies for DI conversion cases. Retroactive benefits for the current year, by age, are then calculated. The closed-group factors for old-age benefits for each year are found by summing the benefit amounts attributable to the specified closed group, as a proportion of total retired worker benefits for all ages. This process is done separately by sex.

## Disabled Workers

For each age from 20 to the year before normal retirement age, the program adds the products of the number of beneficiaries for each duration and the PIA for that duration. Retroactive benefits for the current year, by age, are then calculated. The closed-group factors for disability benefits are found by summing the total benefit amounts attributable to the closed group, as a proportion of total disabled worker benefits for all ages. This process is done separately by sex.

## Aged Spouses and Divorced Aged Spouses

Closed Group calculations are done separately (although in the same manner) for aged wives, aged divorced wives, aged husbands, and aged divorced husbands. The number of aged spouse beneficiaries in each beneficiary category in current pay status (no dual entitlement) is provided by single year of age (up through 119). Then, for each single year of age, the program allocates total numbers of workers by age, from 12 years younger to 15 years older than the aged spouse using an assumed category-specific distribution. Next, for each age of worker in current pay, the number of workers is multiplied by the weighted average retired worker benefit for that age; this is done for all ages. The closed group factors, then, are obtained by determining the proportion of total benefit amounts attributable to the given closed group (based on the worker's age).

For aged spouses in dual entitlement status (i.e. aged spouses with a smaller worker benefit) we do similar calculations with the assumption that the age distributions are equal to the combined distribution of non-dually entitled aged spouses and aged divorced spouses. The calculations are done separately for male and female beneficiaries.

Closed Group calculations are done separately (although in the same manner) for aged widows, aged divorced widows, aged widowers, and aged divorced widowers. The number of aged widow(er) beneficiaries in current pay status (no dual entitlement) is provided by age from 60 to 119. For each single year of age, the program allocates total number of aged widows by age of the deceased husband (age the husband would have been if he had not died), from 6 years younger to 12 years older than the aged widow using an assumed distribution. The same distribution is used in reverse order for aged widowers leading to an age range of 12 years younger to 6 years older for the deceased wife. For each age of deceased spouses aged 119 or younger, a real wage growth factor is applied to reflect ultimate real wage growth taken to the power of the number of years younger than age 119.

$$
\text { Benefitadj }=\left(1+w g \_u l t-1.028\right)^{(119-\text { deceased wor kerage })}
$$

This exponent is intended to reflect differences in average levels of benefits, with younger deceased spouses having higher benefits based on real wage growth. The closed group factors, then, are obtained by determining the proportion of total benefit amounts attributable to the closed group.

For aged widow(er)s in dual entitlement status (i.e. aged widow(er)s with a smaller worker benefit) we do similar calculations with the assumption that the age distributions are equal to the combined distribution of non-dually entitled aged widow(er)s and aged divorced widow(er)s.

## Other Beneficiary Categories

For the 20 other dependent beneficiaries of retired workers, disabled workers, and deceased workers, an input file of closed group benefit factors is created, which represents the proportion of total (open-group) projected benefits in that category attributable to the given closed group age and year. This file is used by the cost program to compute amounts from each beneficiary category attributable to the closed group. The file, separately created for each closed group run, contains closed group benefit factors for ages 0 through 150 for each of the 20 beneficiary categories by sex of the account holder (worker). These input files are created by examining a recent sample of Master Beneficiary Record (MBR) data ${ }^{1}$ for each of the beneficiary categories by age of the worker, and projecting future distributions by age of the worker based on population and, for survivor benefits, projected deaths by age. Then, adjustments are made for real wage growth to reflect different benefit levels by birth cohort.

## Taxation of Benefits

Since taxation of benefits is related to benefits, the closed-group taxation of benefit amounts are computed by multiplying the total (open-group) taxation of benefit amounts by Trust Fund, by the corresponding total closed-group benefit factors by Trust Fund.

## Administrative Expenses

Since administrative expenses are also assumed to be related to benefits, the closed-group administrative expense amounts are computed by multiplying the total (open-group) administrative expenses by Trust Fund), by the corresponding total closed-group benefit factors by Trust Fund.

## Railroad Interchange

Since the railroad interchange has both a payroll tax and benefit component, each component is multiplied by its corresponding closed-group factor. That is, total payroll tax contributions arising from railroad interchange are multiplied by the closed group payroll factor discussed above in the "Tax on Contributions" section. Total railroad benefits, by Trust Fund, are multiplied by the aggregate closed-group benefit factors by Trust Fund. Closed-group railroad administrative expenses and closed-group railroad taxation of benefits are also estimated by applying aggregate closed group benefit factors by Trust Fund. The final amount is then the difference in the components (closed group railroad income less closed group railroad cost).

## Appendix 4.3-1 Shuttling Method

In this appendix, we discuss the "shuttling method".
The shuttling method as presented in the COST model attempts to reorganize the PAPs obtained from subprocess 4.2 , which maintains a static age-sex distribution of newly entitled beneficiaries, in such a way that captures the changing age-sex distribution of newly entitled beneficiaries provided by subprocess 3.3. The age-sex distribution of the sample (subprocess 4.2) and those newly entitled from subprocess 3.3 are aligned in the sample year. This alignment persists throughout all years in the long-range period. When we refer to the age-sex distribution from subprocess 3.3 in what follows below, we refer to the aligned age-sex distribution.

Let oadsrs be the age/sex distribution of the sample from subprocess 4.2. Let oabicp be the number of newly entitled beneficiaries by age and sex from subprocess 3.3. Let total be the total number of newly entitled beneficiaries by sex. The ratio
$\frac{\operatorname{oabicp}(\operatorname{sex}, a g e)}{\operatorname{total}(\operatorname{sex})}$, for age $=62, \ldots, 70$ gives the age-sex distribution from subprocess 3.3. The
array $r$ rb_oadscp_sampleyr is the age-sex distribution from subprocess 3.3 from the sample year (2007 for the 2012 Trustees Report).

The value of oadscp is defined, by age and sex, to be:
oadscp $($ sex, age $)=\frac{\operatorname{oabicp}(\operatorname{sex}, a g e)}{\operatorname{total}(\operatorname{sex})}+$ oadsrs $($ sex, age $)-r s b_{-}$oadscp_sampleyr $($sex, age $)$. Starti
ng with the 2010 Trustees Report, we set all values of rsb_oadscp_sampleyr to the corresponding value of oadsrs. Therefore, the value of oadscp is now defined to be:
$\operatorname{oadscp}(\operatorname{sex}, a g e)=\frac{\operatorname{oabicp}(\operatorname{sex}, a g e)}{\operatorname{total}(\operatorname{sex})}$. Despite the fact that we eliminated the actual alignment we
will still refer to this as the aligned age-sex distribution as obtained from subprocess 3.3 (with the assumption that the alignment left the age-sex distribution unchanged).

For each sex, we construct a matrix oads. Construction of this matrix uses two different age-sex distributions: the age-sex distribution of the awards sample and the aligned age-sex distribution of newly entitled beneficiaries from subprocess 3.3 . The matrix oads is a $9 \times 9$ matrix whose rows and columns are indexed consecutively by the ages $62, \ldots, 70$. We index the rows of this matrix by the age of entitlement of a worker in the projection (ageent $R S B$ ) and the columns of this matrix by the age of entitlement of a worker in the Awards sample (ageentAWD).

More precisely, for a given sex, let oadsrs be the age distribution of the sample; oadscp be the aligned age distribution of newly entitled beneficiaries from subprocess 3.3. Both arrays oadsrs and oadscp are indexed by age, ages $=62, \ldots, 70$. For a given sex, the matrix oads is constructed with the following properties:

$$
\text { oadscp }(\text { ageentRSB })=\sum_{\text {ageentAWD=62 }}^{70} \text { oads }(\text { ageentRSB }, \text { ageentAWD })
$$

and

$$
\operatorname{oadsrs}(\text { ageent } A W D)=\sum_{\text {ageentRSB=62 }}^{70} \text { oads }(\text { ageent } R S B, \text { ageentAWD }) .
$$

In other words, the matrix oads has the following properties:

- The sum of the entries in any row of the matrix is the value of the distribution of the projection for the age corresponding to the row.
- The sum of the entries in any column of the matrix is the value of the distribution of the Awards sample for the age corresponding to the column.

Let opap be the original potential AIME percentages (PAPs) passed to subprocess 4.3 from subprocess 4.2. This is a $9 \times 30$ matrix whose rows are indexed by ages at entitlement $62, \ldots, 70$ and whose columns are indexed by benefit interval $1, \ldots, 30$ (represented by the variable $i$ in the formulas below). The values of opap are modified and the results are the PAPs used by process 4.3, called opapl. As a formula, opap1(ageentRSB,i)

$$
=\frac{\sum_{\text {ageentAWD }=62}^{70} \text { opap }(\text { ageent } A W D, i) \times \text { oads }(\text { ageent } R S B, \text { ageent } A W D)}{\sum_{\text {ageentAWD=62 }}^{70} \text { oads }(\text { ageentRSB, ageentAWD })} .
$$

This formula may be rewritten as follows.
opap1(ageentRSB,i)

$$
=\sum_{\text {ageentAWD=62 }}^{70} \operatorname{opap}(\text { ageentAWD, } i) \times \frac{\text { oads }(\text { ageentRSB, ageentAWD })}{\sum_{\text {ageentAWD=62 }}^{70} \text { oads (ageentRSB, ageentAWD) }} .
$$

It follows that opapl may be interpreted as a reweighting of opap. We have

$$
\operatorname{opap} 1(\text { ageentRSB, } i)=\sum_{\text {ageenAWD } 62}^{70} w_{\text {ageentRSB,ageentAWD }} \times \text { opap }(\text { ageentAWD, } i)
$$

with weights $w_{\text {ageentRSB,ageentAWD }}=\frac{\text { oads }(\text { ageent } R S B, \text { ageentAWD })}{\text { oadscp }(\text { ageent } R S B)}$.
As matrices, opap $1=w \times$ opap (and is another $9 \times 10$ matrix).
Consider the following example. In this example, the projection year is 2040, and the sex is males.

The oadsrs vector (from subprocess 4.2) is as follows.

|  | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Male | 0.3843 | 0.1416 | 0.0791 | 0.1588 | 0.2128 | 0.0106 | 0.0048 | 0.0041 | 0.0040 |

The unaligned age-sex distribution (from subprocess 3.3) is as follows.

|  | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Male | 0.3067 | 0.1398 | 0.0570 | 0.1118 | 0.1238 | 0.2234 | 0.0092 | 0.0198 | 0.0085 |

The age-sex distribution (from subprocess 3.3) in 2007, the year of the sample is assumed the same as the oadsrs vector and therefore is as follows.

|  | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Male | 0.3843 | 0.1416 | 0.0791 | 0.1588 | 0.2128 | 0.0106 | 0.0048 | 0.0041 | 0.0040 |

Hence the aligned age-sex distribution (from subprocess 3.3), that is, the oadscp vector, is as follows.

|  | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Male | 0.3067 | 0.1398 | 0.0570 | 0.1118 | 0.1238 | 0.2234 | 0.0092 | 0.0198 | 0.0085 |

The matrix oads, computed in this subprocess (4.3) is as follows. An explanation of how this matrix is generated appears below.

| ageentRSB $\backslash$ ageentAWD | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 62 | 0.3067 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3067 |
| 63 | 0.0776 | 0.0622 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1398 |
| 64 | 0.0000 | 0.0570 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0570 |
| 65 | 0.0000 | 0.0224 | 0.0791 | 0.0103 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1118 |
| 66 | 0.0000 | 0.0000 | 0.0000 | 0.1238 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1238 |
| 67 | 0.0000 | 0.0000 | 0.0000 | 0.0247 | 0.1987 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2234 |
| 68 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0092 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0092 |
| 69 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0049 | 0.0106 | 0.0043 | 0.0000 | 0.0000 | 0.0198 |
| 70 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0005 | 0.0041 | 0.0040 | 0.0085 |
| Total | 0.3843 | 0.1416 | 0.0791 | 0.1588 | 0.2128 | 0.0106 | 0.0048 | 0.0041 | 0.0040 | 1.0000 |

Note that the column total is oadsrs and the row total is oadscp. The oads matrix is determined using these row and column sum constraints. The nonzero entries of the oads matrix zigzag down and to the right. Starting at the upper left hand corner, the lesser of oadsrs and oadscp is put there. So oads $(62,62)=0.3067$.

In this case (as is usually the case), oadscp is less. The difference $\operatorname{oadsr}(62)-\operatorname{oadscp}(62)=0.3843-0.3067=0.0776$ is placed one lower, in $\operatorname{oads}(63,62)$.

Since the sum of the first column is oadsrs(62) and the sum of the first row is oadscp(62), we move to the next entry on the right. The difference
$\operatorname{oadscp}(63)-\operatorname{oads}(63,62)=0.1398-0.0776=0.0662$,is $\operatorname{oads}(63,63)$.
Now we have that the row sum is oadscp(63). We want the column sum to be oadsrs(63). We
move down to oads $(64,63)$. Since
$\operatorname{oadsrs}(63)-\operatorname{oads}(63,63)=0.1416-0.0622=0.0794>0.0570=\operatorname{oadscp}(64)$, by the row sum constraint we are forced to have $\operatorname{oads}(64,63)=0.0570$.

Now move one lower. Since $0.1416-0.0570-0.0622=0.0224<\operatorname{oadscp}(65)=0.1118$, the entry $\operatorname{oads}(65,63)=0.0224$.

The column sum is now oadsrs(63), and we move one over to the right. We want to fill in this entry. Since $\operatorname{oadscp}(65)-\operatorname{oads}(65,63)=0.1118-0.0224=0.0894>0.0791=\operatorname{oadsrs}(64)$, by the column sum constraint we are forced to have $\operatorname{oads}(65,64)=0.0791$.

The column constraint is now met, and we move right to $\operatorname{oads}(65,65)$. For the row sum to be oadscp $(65)$ we have $\operatorname{oads}(65,65)=0.1118-0.0791-0.0224=0.0103$.

Since the row constraint is now met, we move down to $\operatorname{oads}(66,65)$.
oadscp $(66)=0.1238<\operatorname{oadsrs}(65)-\operatorname{oads}(65,65)=.1588-.0103=.1485$, so by the row constraint $\operatorname{oads}(66,65)=0.1238$.

Now we can get the column total to match oadsrs(65) by setting $\operatorname{oads}(67,65)=0.1588-0.1238-0.0103=0.0247$.

Now that this column constraint is met, we move one column over to oads(67,66). In order to meet the row constraint, oads $(67,66)=\operatorname{oadscp}(67)-\operatorname{oads}(67,65)=0.2234-0.0247=0.1987$.

Since the row constraint is met, we move one row down to oads $(68,66)$. Since $\operatorname{oads}(67,66)+\operatorname{oadscp}(68)<\operatorname{oadsrs}(66)$, we have $\operatorname{oads}(68,66)=\operatorname{oadscp}(68)=0.0092$.

Since the row constraint is met, we now move one row down to oads $(69,66)$. We cannot put oadscp $(69)=0.0204$ there or else the column constraint would be violated. Hence $\operatorname{oads}(69,66)=\operatorname{oadsrs}(66)-\operatorname{oads}(67,66)-\operatorname{oads}(68,66)=0.2128-0.1987-0.0092=0.0049$ and the column constraint is met.

Now move one column over to $\operatorname{oads}(69,67)$. We put $\operatorname{oads}(69,67)=\operatorname{oadsrs}(67)=0.0106$ there since that meets the column constraint and the row constraint remains unsatisfied.

So move over to the next column, oads $(69,68)$. We cannot put $\operatorname{oadsrs}(68)$ there since that would violate the row constraint. It follows that
$\operatorname{oads}(69,68)=\operatorname{oadscp}(69)-\operatorname{oads}(69,66)-\operatorname{oads}(69,67)=0.0198-0.0049-0.0106=0.0043$.
Now the row constraint is satisfied and we move down to the last row and $\operatorname{oads}(70,68)$. By the column constraint, this entry is forced to be 0.0005 .

Moving to column 69, again, by the column constraint, the entry oads $(70,69)$ is forced to be 0.0041.

Finally, by the row and column constraints, the last entry, $\operatorname{oads}(70,70)$, is 0.0040 .

To obtain the $w$ matrix, normalize the rows by dividing by the row sum.

| ageentRSB ageentAWD | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 62 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 63 | 0.5551 | 0.4449 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 64 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 65 | 0.0000 | 0.2004 | 0.7075 | 0.0921 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 66 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 67 | 0.0000 | 0.0000 | 0.0000 | 0.1106 | 0.8894 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 68 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 69 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2475 | 0.5354 | 0.2172 | 0.0000 | 0.0000 |
| 70 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0588 | 0.4824 | 0.4706 |

Then, as matrices, opap $1=w \times$ opap, as one may verify. For display purposes the transposes of opap and opap 1 are shown.

| opap | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 0.9993 | 0.9992 | 0.9988 | 0.9986 | 0.9989 | 0.9988 | 0.9988 | 0.9986 | 0.9985 |
| 2 | 0.9870 | 0.9868 | 0.9854 | 0.9826 | 0.9854 | 0.9915 | 0.9915 | 0.9880 | 0.9330 |
| 3 | 0.9564 | 0.9569 | 0.9567 | 0.9535 | 0.9606 | 0.9779 | 0.9779 | 0.9679 | 0.8236 |
| 4 | 0.9229 | 0.9254 | 0.9264 | 0.9231 | 0.9349 | 0.9616 | 0.9616 | 0.9460 | 0.7315 |
| 5 | 0.8900 | 0.8951 | 0.8989 | 0.8976 | 0.9121 | 0.9453 | 0.9453 | 0.9266 | 0.6757 |
| 6 | 0.8592 | 0.8656 | 0.8716 | 0.8740 | 0.8914 | 0.9291 | 0.9291 | 0.9082 | 0.6375 |
| 7 | 0.8294 | 0.8367 | 0.8443 | 0.8509 | 0.8714 | 0.9121 | 0.9121 | 0.8905 | 0.6080 |
| 8 | 0.8000 | 0.8078 | 0.8175 | 0.8269 | 0.8502 | 0.8973 | 0.8973 | 0.8741 | 0.5763 |
| 9 | 0.7716 | 0.7805 | 0.7922 | 0.8049 | 0.8307 | 0.8815 | 0.8815 | 0.8570 | 0.5489 |
| 10 | 0.7419 | 0.7538 | 0.7667 | 0.7814 | 0.8105 | 0.8649 | 0.8649 | 0.8395 | 0.5259 |
| 11 | 0.7134 | 0.7250 | 0.7393 | 0.7579 | 0.7891 | 0.8459 | 0.8459 | 0.8199 | 0.5024 |
| 12 | 0.6840 | 0.6963 | 0.7120 | 0.7325 | 0.7657 | 0.8264 | 0.8264 | 0.8002 | 0.4852 |
| 13 | 0.6535 | 0.6646 | 0.6802 | 0.7032 | 0.7398 | 0.8051 | 0.8051 | 0.7794 | 0.4696 |
| 14 | 0.6024 | 0.6118 | 0.6270 | 0.6555 | 0.6966 | 0.7645 | 0.7645 | 0.7402 | 0.4477 |
| 15 | 0.5284 | 0.5354 | 0.5516 | 0.5857 | 0.6306 | 0.7030 | 0.7030 | 0.6809 | 0.4135 |
| 16 | 0.4534 | 0.4576 | 0.4739 | 0.5142 | 0.5629 | 0.6388 | 0.6388 | 0.6200 | 0.3848 |


| 17 | 0.3785 | 0.3824 | 0.3985 | 0.4407 | 0.4921 | 0.5698 | 0.5698 | 0.5546 | 0.3566 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 18 | 0.3086 | 0.3152 | 0.3321 | 0.3769 | 0.4285 | 0.5019 | 0.5019 | 0.4899 | 0.3280 |
| 19 | 0.2179 | 0.2273 | 0.2468 | 0.2953 | 0.3428 | 0.4064 | 0.4064 | 0.3983 | 0.2879 |
| 20 | 0.1239 | 0.1360 | 0.1547 | 0.2007 | 0.2447 | 0.2999 | 0.2999 | 0.2963 | 0.2390 |
| 21 | 0.0582 | 0.0689 | 0.0845 | 0.1211 | 0.1558 | 0.1997 | 0.1997 | 0.1988 | 0.1801 |
| 22 | 0.0187 | 0.0235 | 0.0316 | 0.0499 | 0.0674 | 0.0907 | 0.0907 | 0.0918 | 0.1067 |
| 23 | 0.0029 | 0.0040 | 0.0060 | 0.0125 | 0.0184 | 0.0246 | 0.0246 | 0.0256 | 0.0376 |
| 24 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0001 | 0.0024 |
| 25 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 26 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 27 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 28 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 29 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 30 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |


| opap1 | 6 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 0.9993 | 0.9992 | 0.9988 | 0.9986 | 0.9989 | 0.9988 | 0.9988 | 0.9986 | 0.9985 |
| 2 | 0.9870 | 0.9868 | 0.9854 | 0.9826 | 0.9854 | 0.9915 | 0.9915 | 0.9880 | 0.9330 |
| 3 | 0.9564 | 0.9569 | 0.9567 | 0.9535 | 0.9606 | 0.9779 | 0.9779 | 0.9679 | 0.8236 |
| 4 | 0.9229 | 0.9254 | 0.9264 | 0.9231 | 0.9349 | 0.9616 | 0.9616 | 0.9460 | 0.7315 |
| 5 | 0.8900 | 0.8951 | 0.8989 | 0.8976 | 0.9121 | 0.9453 | 0.9453 | 0.9266 | 0.6757 |
| 6 | 0.8592 | 0.8656 | 0.8716 | 0.8740 | 0.8914 | 0.9291 | 0.9291 | 0.9082 | 0.6375 |
| 7 | 0.8294 | 0.8367 | 0.8443 | 0.8509 | 0.8714 | 0.9121 | 0.9121 | 0.8905 | 0.6080 |
| 8 | 0.8000 | 0.8078 | 0.8175 | 0.8269 | 0.8502 | 0.8973 | 0.8973 | 0.8741 | 0.5763 |
| 9 | 0.7716 | 0.7805 | 0.7922 | 0.8049 | 0.8307 | 0.8815 | 0.8815 | 0.8570 | 0.5489 |
| 10 | 0.7419 | 0.7538 | 0.7667 | 0.7814 | 0.8105 | 0.8649 | 0.8649 | 0.8395 | 0.5259 |
| 11 | 0.7134 | 0.7250 | 0.7393 | 0.7579 | 0.7891 | 0.8459 | 0.8459 | 0.8199 | 0.5024 |
| 12 | 0.6840 | 0.6963 | 0.7120 | 0.7325 | 0.7657 | 0.8264 | 0.8264 | 0.8002 | 0.4852 |
| 13 | 0.6535 | 0.6646 | 0.6802 | 0.7032 | 0.7398 | 0.8051 | 0.8051 | 0.7794 | 0.4696 |
| 14 | 0.6024 | 0.6118 | 0.6270 | 0.6555 | 0.6966 | 0.7645 | 0.7645 | 0.7402 | 0.4477 |
| 15 | 0.5284 | 0.5354 | 0.5516 | 0.5857 | 0.6306 | 0.7030 | 0.7030 | 0.6809 | 0.4135 |
| 16 | 0.4534 | 0.4576 | 0.4739 | 0.5142 | 0.5629 | 0.6388 | 0.6388 | 0.6200 | 0.3848 |
| 17 | 0.3785 | 0.3824 | 0.3985 | 0.4407 | 0.4921 | 0.5698 | 0.5698 | 0.5546 | 0.3566 |
| 18 | 0.3086 | 0.3152 | 0.3321 | 0.3769 | 0.4285 | 0.5019 | 0.5019 | 0.4899 | 0.3280 |
| 19 | 0.2179 | 0.2273 | 0.2468 | 0.2953 | 0.3428 | 0.4064 | 0.4064 | 0.3983 | 0.2879 |
| 20 | 0.1239 | 0.1360 | 0.1547 | 0.2007 | 0.2447 | 0.2999 | 0.2999 | 0.2963 | 0.2390 |
| 21 | 0.0582 | 0.0689 | 0.0845 | 0.1211 | 0.1558 | 0.1997 | 0.1997 | 0.1988 | 0.1801 |
| 22 | 0.0187 | 0.0235 | 0.0316 | 0.0499 | 0.0674 | 0.0907 | 0.0907 | 0.0918 | 0.1067 |
| 23 | 0.0029 | 0.0040 | 0.0060 | 0.0125 | 0.0184 | 0.0246 | 0.0246 | 0.0256 | 0.0376 |
| 24 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0001 | 0.0024 |
| 25 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 26 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 27 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 28 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 29 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 30 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |


[^0]:    ${ }^{1}$ The Social Security area population consists of all persons who are potentially eligible to receive benefits under the Social Security program or who have the potential to work in covered employment. This population consists of residents of the U.S. and its territories, citizens living abroad, and beneficiaries living abroad.

[^1]:    ${ }^{2}$ The ages provided include $10-14,15,16,17, \ldots, 48,49-54$. Births at ages less than 14 are treated as having occurred at age 14 and ages reported to mothers older than 49 are treated as having occurred at age 49 .

[^2]:    ${ }^{3}$ The average is calculated by giving each age in the group equal weight without regard to population. The age groups calculated are: 14-19, 20-24, 25-29, 30-34, 35-39, 40-44, and 45-49.

[^3]:    ${ }^{4}$ For each year of the projection, the slope is reduced by four percentage points.

[^4]:    ${ }^{5}$ Data needed in order to project central death rates by cause of death were obtained from Vital Statistics tabulations for years since 1979. For the years 1979-1998, adjustments were made to the distribution of the numbers of deaths by cause. The adjustments were needed in order to reflect the revision in the cause of death coding that occurred in 1999, making the data for the years 1979-1998 more comparable with the coding used for the years 1999 and later. The adjustments were based on comparability ratios published by the National Center for Health Statistics.

[^5]:    ${ }^{6}$ Age groups are: less than 15, 15-49, 50-64, 65-84, 85+
    ${ }^{7}$ The five causes of death are: Cardiovascular Disease, Cancer, Violence, Respiratory Disease, and Other

[^6]:    ${ }^{8}$ Age groups are: under 24 hours, 1-2 days, 3-6 days, $7-27$ days, 28 days- 1 month, 2 months, 3 months,..., 11 months, 1 year, 2 years, 3 years, 4 years
    ${ }^{9}$ Age groups are: $0,1-4,5-14,15-24, \ldots, 75-84,85+$

[^7]:    ${ }^{10}$ Age groups are: 15-17, 18-19, 20-24, 25-29,..., 40-44, 45-54, ..., 65-74, 85+
    ${ }^{11}$ Age groups are: 15-19, 20-24, 25-29, ..., 90-94, 95+
    ${ }^{12}$ Age groups for years prior to 1980 are: $0,1-4,5-9, \ldots, 80-84,85+$. For years 1980 and later, the age groups are: 0 , 1-4, 5-9, ..., 90-94, 95+.

[^8]:    ${ }^{13}$ Age groups are: $0,1-4,5-9,10-14, \ldots, 90-94$, and $95+$
    ${ }^{14}$ The five causes of death are: Cardiovascular Disease, Cancer, Violence, Respiratory Disease, and Other.

[^9]:    * Alternative 1 is $1 / 2$ times Alternative 2; Alternative 3 is $5 / 3$ times Alternative 2.
    **Resulting total represents average annual percent reduction in age-adjusted death rates for the last 50 years of the 75 year projection period.

[^10]:    ${ }^{15}$ The federal fiscal year begins on October 1 of the previous calendar year and ends on September 30 of the specified calendar year.

[^11]:    ${ }^{16}$ Age groups are: 15-17, 18-19, 20-24, 25-29, ..., 55-64, 65-74, 75-84, 85+

[^12]:    ${ }^{17}$ See "Evaluating Components of International Migration: The Residual Foreign Born" by Joseph Costanzo, Cynthia J. Davis, Caribert Irazi, Daniel M. Goodkind, and Roberto R. Ramirez. Issued January 2002.
    ${ }^{18}$ This factor is meant to take into account that a large number of people who have the potential to adjust to LPR status may die or return to their native country prior to doing so.

[^13]:    ${ }^{19}$ The term non-immigrant refers to a foreign national who has entered the United States temporarily for a specific purpose (as defined by the DHS).

[^14]:    ${ }^{20}$ The geometric mean, as used in this document, is the square root of the product of two numbers.

[^15]:    ${ }^{21}$ Data for 1980 is not available and is excluded from the calculations.

[^16]:    ${ }^{22}$ Data for 1988 was used to estimate the number of Puerto Rico and Virgin Island divorces for 1989-1997.

[^17]:    ${ }^{23}$ Data for 1988 was used to estimate the number of Puerto Rico and Virgin Island divorces for 1989-1997.
    ${ }^{24}$ Using the Whittaker-Henderson method of graduation.

[^18]:    ${ }^{25}$ Other immigrants include all immigrants, other than legal permanent residents, who stay for 6 months or more. They include unauthorized immigrants, temporary workers, and students.

[^19]:    ${ }^{26}$ The midyear populations exposed to marriage are the unmarried populations (sum of those single, widowed, and divorced).

[^20]:    ${ }^{27}$ Group disaggregation includes age and gender. Some groups are additionally disaggregated by marital status, presence of children.

[^21]:    ${ }^{28}$ More details on the hypothetical scaled workers are provided in Actuarial Note \#2005.3, located at the following internet address: www.socialsecurity.gov/OACT/NOTES/ran3/index.html.

[^22]:    PF63
    Ordinary Least Squares
    ANNUAL data for 15 periods from 1994 to 2008

[^23]:    ${ }^{29}$ This occurs when the female covered worker rate is greater than 80 percent of the male rate. When the female rate is equal to or greater than the male rate, the female SLCT and SRCH parameters are set equal to the male parameters. The parameters are linearly interpolated when the female covered worker rate is between 80 and 100 percent of the male rate.

[^24]:    ${ }^{30}$ Those who are on the rolls for less than 4 years are assumed to meet the requirement for disability-insured status based on their earnings histories.

[^25]:    ${ }^{31}$ Single, married, widowed, divorced.

[^26]:    ${ }^{32}$ Age groups 1 through 9 are 18-19, 20-24, 25-29,..., 55-59.

[^27]:    ${ }^{33}$ Conversions are DIB beneficiaries who become eligible for old-age benefits due to reaching the normal retirement age.
    ${ }^{34}$ Retroactive factors for each calendar year are the ratio of the total monthly payments to DIBs to the monthly DIBs in current payment status times the average DIB monthly benefit.
    ${ }^{35}$ IBNR factors reflect the proportion of DIBs entitled to benefits who have been awarded since the year of their entitlement.

[^28]:    ${ }^{36}$ There are no young spouses at NRA or above.

[^29]:    ${ }^{37}$ For example, to calculate the projected number of 65 year olds in a given year, the prevalence rate at age 62 is needed. This is actually the prevalence rate that occurred three years ago at age 62.

[^30]:    ${ }^{38}$ There are no young spouses at NRA or above.

[^31]:    ${ }^{39}$ Even though about a 4 percent reduction is observed in the output table "tables. 0000 " of the FORTRAN side simulation program TB09292011.f90, the 5 percent reduction is kept for the 2012 Trustees Report because retirees' 2009 income is likely affected (made lower) by the economic recession. (The base year of data used for the side simulation program is 2009).

[^32]:    ${ }^{40}$ A record is selected if the year of initial entitlement equals 2007 and the beneficiary is in current pay status as of Dec. 2007, 2008 or 2009. Retired beneficiaries over age 70 and disability beneficiaries under age 20 or over age 64 were excluded.
    ${ }^{41}$ The current law PIA formula has two bend points. For the purposes of PAP, the Awards subprocess instead uses 30 subintervals.

[^33]:    ${ }^{42}$ This file is a $1 \%$ sample of individuals who had covered earnings at some point in their work histories.

[^34]:    ${ }^{43}$ Individuals in the sample affected by the Windfall Elimination Provision are less likely to have earnings removed or added by this process.

[^35]:    ${ }^{44}$ AIE is the average indexed annual earnings, average over the highest $Y$ years of earnings (similar to AIME, but an annual amount).
    ${ }^{45}$ In this subprocess, earnings histories of projected beneficiaries are all reflected as wage-indexed earnings histories in the 2007 sample.
    ${ }^{46}$ These historical values are tabulated by the Economic subprocess.
    ${ }^{47}$ These values are based on earnings posted to the Master Earnings File (MEF), excluding earnings posted to the suspense file.

[^36]:    ${ }^{48}$ The comparable changes reflect the wage-indexed changes in the ${ }_{\text {cwhs }}$ ATE $_{\text {as }}$ between the year of earnings in the sample of new beneficiaries and the year of earnings in the projected sample.

[^37]:    ${ }^{49}$ The difference between $Y(20, t)$ and $\hat{Y}(20, t)$.

[^38]:    ${ }^{50}$ The average taxable earnings have been computed using projected earnings adjusted for changes in the wage base. Adjustments to earnings for the earnings experience in the CWHS have not been applied at this stage in the process. ${ }_{52}^{51}$ All projection year dollars are converted back to 'sample year' dollar amounts, using the Average Wage Index.
    ${ }^{52}$ Because not all earnings are posted for the most recent years for a given CWHS file, adjustment factors, based on historical trends, are applied by the Economic subprocess to complete these earnings. For the 2009 CWHS,

[^39]:    ${ }^{53}$ The average taxable earnings have been computed using projected earnings adjusted for changes in the wage base and for changes in covered worker rates.
    ${ }^{54}$ Amount is in 1977 dollars, 'sample year dollars'.

[^40]:    ${ }^{55}$ Amount is in 1997 dollars, 'sample year dollars'.

[^41]:    ${ }^{56}$ For disabled adult children of deceased workers and lump-sum beneficiaries, data were extracted from a 1percent sample of the December 2011 MBR, mainframe dataset ACT.TAPEL.CAN1211. For the other 18 auxiliary beneficiary categories, data was extracted from the 100 percent December 2011 MBR, mainframe dataset ACT.TAPEH.MBR100.D1112.CANSORT.

[^42]:    ${ }^{57}$ The Windfall Elimination Provision (WEP) reduces the first PIA formula factor from $90 \%$ to as low as $40 \%$ for individuals who receive a pension based on specified categories of non-covered employment, primarily non-covered state and local government employees and federal workers receiving a pension under the Civil Service Retirement System. The cost process uses initial factors by sex and age, ultimate factors, years in which ultimate factors are reached and phase-in trend lines to the ultimate factor, all supplied by a side model.

[^43]:    ${ }^{58}$ Under check cycling many Social Security beneficiaries filing for benefits after April 1997 are paid on either the $2^{\text {nd }}, 3^{\text {rd }}$, or $4^{\text {th }}$ Wednesday of each month. In the past, benefits were always paid on the $3^{\text {rd }}$ day of each month.

