Declining Mortality (Increasing Longevity): At What Rate?

Steve Goss and Mark Bye
 Office of the Chief Actuary Social Security Administration

Living to 100 International Symposium
Society of Actuaries
January 5, 2017

Perspective: "Aging" Not Mainly from Mortality

Aging (change in age distribution) mainly due to drop in birth rates

Various Alternative Projection Approaches Using Data

- Extrapolating past trends:

1) Age setback (early method)
2) Mortality rate by age and sex (Lee/Carter)
3) Life expectancy at birth (Vaupel/Oeppen)
4) Mortality rate by trend all ages (2011 Technical Panel, CBO 2013-5)

- Or reflect changing conditions:

5) Improvement by cohort (UK CMI, SOA)
6) Mortality rate by age, sex, cause (OCACT/TR, 2015 Technical Panel)

2) Extrapolation by Age and Sex

- Example: Lee and Carter
\bullet Fit the average trend of a selected period
-Future conditions must replicate the past-on average
- Age gradient never changes
- No deceleration in mortality decline

Mortality Decline Varies Over Time

Conditions: Antibiotics/economy 1936-54; Medicare/Medicaid 1968-82

Female Historical and Projected (2014 Trustees Report)

Male Historical and Projected (2014 Trustees Report)

3) Will Life Expectancy Rise Linearly? Vaupel/Oeppen 2002; Best Nations

- Requires accelerating rate of decline in mortality rates if retain age gradient
- LE most affected by lowest ages-only so much gain possible
- Most disagree
- Vallin/Meslé

Figure 2. Maximum female life expectancy at birth since 1750 but excluding Norway (until 1866) and New Zealand
Source: Vallin and Meslé 2008

4) Extrapolate All Ages the Same

- Ignores historical age gradient
- Result:
- Substantial bias for population age distribution
- Thus, large bias for cost as \% of payroll
- Less mortality decline at young ages raises cost
- More mortality decline at higher ages raises cost

Appropriate Data: by Age Critical

 Age-gradient in past reduction is clear

Recent Historical Average Annual Rates of Reduction in Mortality 1982 to 2009

5) Extrapolation by Cohort

* U.K. (\& SOA-RPEC): "Phantoms never die" data issues
* Post-WW2 births: antibiotics young, statins later
* What does change up to age x say above age x?
$>$ Is cohort healthier at x if lower mortality up to x ?
$>$ Or is cohort compromised by impaired survivors?
$>$ What does one cohort imply for the next cohort?
* Period effects from known changes in conditions are stronger-especially in the U.S.

6) Projection by Age, Sex, Cause

- SSA/OCACT/Trustees Reports (2015 Technical Panel)
- Requires selecting ultimate rates of decline
- Allows change in age gradient
- Results in deceleration in mortality decline

Comparison of Historical, 2015 Trustees Report, and Ron Lee*
Average Annual Rates of Decline in Age-Sex-Adjusted Death Rates

Historical (Dec 2015 data)			AGE	Ron Lee			2015TR Intermediate		
1982-99	1999-2009	2009-13		2011-39	2011-89	2039-89	2011-39	2011-89	2039-89
2.79	1.22	2.14	0-14	2.77	2.74	2.72	1.58	1.57	1.57
0.63	0.61	1.06	15-49	1.07	1.06	1.05	0.97	0.93	0.90
1.61	1.27	0.05	50-64	1.34	1.34	1.34	1.17	1.09	1.06
0.92	2.11	0.91	65-84	1.06	1.06	1.05	1.09	0.86	0.74
-0.18	1.30	-0.11	85+	0.65	0.64	0.63	0.64	0.53	0.48
0.51	1.78	0.48	65+	0.88	0.86	0.85	0.89	0.71	0.61
0.75	1.59	0.48	Total	0.99	0.96	0.94	0.95	0.80	0.71

* Fit 1950-2011, using Medicare-enrollment data for 65 and over, rather than HMD data

See Actuarial Note 158 https://www.ssa.gov/oact/NOTES/pdf_notes/note158.pdf

Age-adjusted Death Rates for Heart Disease, Cancer, Stroke, and Unintentional Injuries: United States, 1900-2015 (courtesy Robert Anderson, NCHS)

NOTE: Data prior to 1933 contain death-registration States only. Data for 2015 is provisional.

Mortality Decline by Cause of Death:

Rate of change from 1979 to 2013

Age-Sex Extrapolation vs. Age-Sex-Cause Projection

Lee maintaining full age-gradient offsets lack of deceleration Result: OASDI actuarial deficit unchanged using Lee estimates

2015 Technical Panel

- Endorsed projections by cause with age-gradient
- Suggested average age-adjusted 1\% annual rate of decline
- To match average rate since 1950, overall
- Understood this incorporated deceleration
- Chairperson Alicia Munnell, after TR 2016, said she was glad Trustees did not adopt the 1% rate of decline

Mortality Improvement: Slow Since 2009

Trustees Reports have overestimated reduction lately

Developing Assumptions by Cause

- Scientific approach reflecting biology
- Trustees and SSA/OCACT develop in consultation with other experts
- Johns Hopkins recent survey of medical researchers and clinicians came to very similar medium term expectations-independently
- Trustees’ medium-term rates by cause had not been published

Cardiovascular: JHU Less Optimistic than Trustees over Age 50 for Next 30 Years

Respiratory: JHU More Optimistic under Age 50, Less Optimistic over Age 85

Cancer: JHU Very Similar to Trustees' Expectations

How Future Conditions Might Change

-Smoking decline for women

- Started and stopped later than men
-Obesity—sedentary lifestyle
-Difference by income/earnings
-Health spending-must decelerate
- Advances help only if apply to all
- Human limits
- Increasing understanding of deceleration

Trends in Obesity: US 1971-2006

Sam Preston 2010—must consider cumulative effects Increasing duration of obesity for aged in future

Death Rates Vary by Career Earnings Ranking Difference has increased

Female 65-69 Retired-Worker Relative Death Rates by AIME Quartile

Does Health Spending Affect Mortality?

Note rise, at least through 2009

National Health Expenditures With and Without Medicare and Medicaid as a Percent of GDP

Health Spending Cannot Continue to Rise at Historical Rates

Note Trustees' deceleration

Annual Percent Change in Medicare Cost per Beneficiary
Relative to GDP per Worker: 2015 TR

Is There an Omega?

It appears we are rectangularizing the survival curve?

Death Rates Will Continue to Decline: But How Fast and for Whom?

- Must understand past and future conditions
- Persistent historical "age gradient"
- Avoid simple extrapolation of past periods
» Cannot ignore changing conditions
- "Limits" on longevity due to physiology
- Latter half of $20^{\text {th }}$ century was extraordinary
» So deceleration seems likely
» Cause-specific rates allow basis for assumptions
- Results: in the 1982 TR, we projected LE65 in 2013 to be 19.0; actual was 19.1

For More Information... http://www.ssa.gov/oact/

- Documentation of Trustees Report data \& assumptions https://www.ssa.gov/oact/TR/2016/2016_LongRange_Demographic_Assumptions.pdf
- Historical and projected mortality rates https://www.ssa.gov/oact/HistEst/DeathHome.html
- Annual Trustees Reports
https://www.ssa.gov/oact/TR/index.html

